A NEARLY-TIGHT SUM-OF-SQUARES LOWER Bound for planted clique

Boaz Barak

Sam Hopkins

Jon Kelner

Pravesh Kothari

Ankur Moitra

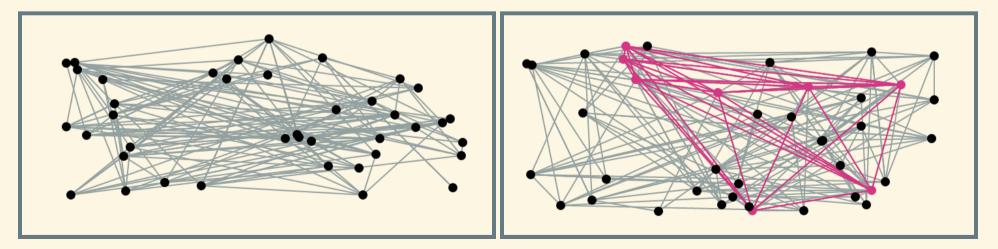
Aaron Potechin ← on the market!

PLANTED CLIQUE ("DISTINGUISHING")

Input: graph G

Goal: determine (with high probability) whether

 $G\sim \mathbb{G}\left(n,rac{1}{2}
ight)$ ("random distribution"), or $G\sim \mathbb{G}\left(n,rac{1}{2}
ight)+k ext{-clique}$ ("planted distribution").



FOR WHAT k is this possible in polynomial time?

BASICS

k = O(1): information-theoretically-impossible BRUTE FORCE

k> max clique in $\mathbb{G}\left(n,rac{1}{2}
ight)pprox 2\log n$ [GM '75, M '76, BE '78] requires $n^{O(\log n)}$ time ("quasipolynomial") SPECTRAL (ADJACENCY MATRIX)

 $k > \sqrt{n}$, polynomial time [АКЅ '98]

HYPOTHESIS: NO POLYNOMIAL-TIME ALGORITHM FOR $k=n^{0.49}$

"SPECTRAL IS BEST"

IF SPECTRAL IS BEST, HARDNESS RESULTS GALORE!

- Sparse PCA [BR '13]
- Compressed Sensing [KZ '14]
- Property Testing [AAK+ '07]
- Mathematical Finance [DBL'10]
- Cryptography [JP '00, ABW '10]
- Computational Biology [PS000, MS01+
- Best Nash Equilibrium [HK '11, ABC '13]
- (and P
 eq NP)

TO BEAT SPECTRAL SEEMS TO REQUIRE NEW ALGORITHMIC IDEAS

Problems which have: a distribution on inputs $n^{O(\log n)}$ -time algorithms

WHY BELIEVE SPECTRAL IS BEST?

no algorithmic progress in 20 years?bad sciencereductions? (3SAT \leq planted clique)distribution on inputsRule out large classes of algorithms

Markov-Chain Monte Carlo [Jerrum '93]

Lovasz-Schrijver+ Convex Hierarchy [Feige-Krauthgamer '04]

Statistical Algorithms [Feldman et al '12]

All do not beat spectral

WHY BELIEVE SPECTRAL COULD BE BEATEN?

THE SUM-OF-SQUARES (META-) ALGORITHM

Generalization of linear programming, basic semidefinite programming, spectral algorithms

Optimal among all (poly-sized) SDPs for constraint satisfaction [LRS '15]

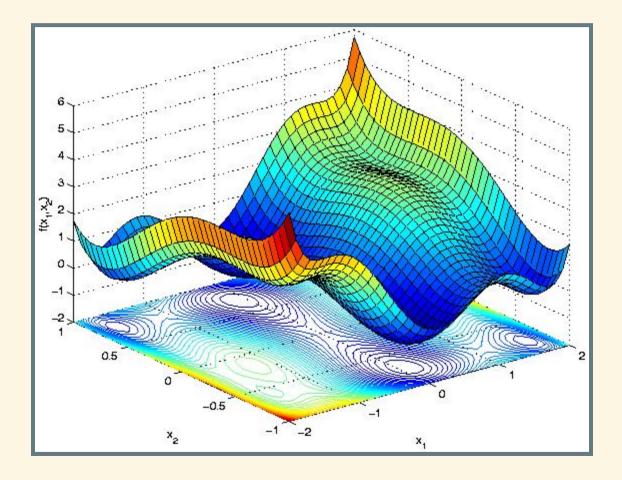
Solves all known hard instances of unique games, max cut in polynomial time [BBHKSZ'12, OZ'13, DMN'12]

Best known algorithm for many *planted problems*, **beating corresponding spectral algorithms!** (dictionary learning, planted CSPs, tensor PCA, tensor decomposition, ...) [BKS '15ab, AOW '15, RRS '16, HSS '15, HSSS '16, GM '15, MSS '16, ...]

QUESTION: DOES SPECTRAL-IS-BEST WITHSTAND THE SUM-OF-Squares algorithm?

Theorem (informal): The Sum-of-Squares hierarchy requires $n^{\Omega(\log n)}$ time to distinguish planted from random when $k = n^{0.49}$.

Spectral-is-best withstands the Sum-of-Squares algorithm.



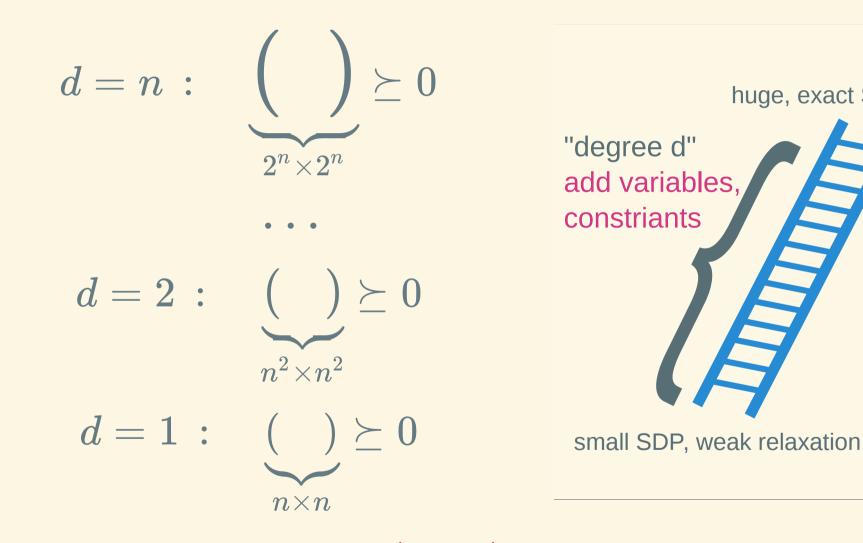
nasty optimization problem

 $\max_{S ext{ a clique in G}} |S|$

A *hierarchy* of increasing-strength semidefinite programming (SDP) relaxations of an underlying (nonconvex) problem.

Generalizing linear programming, basic SDP, spectral methods.

huge, exact SDP

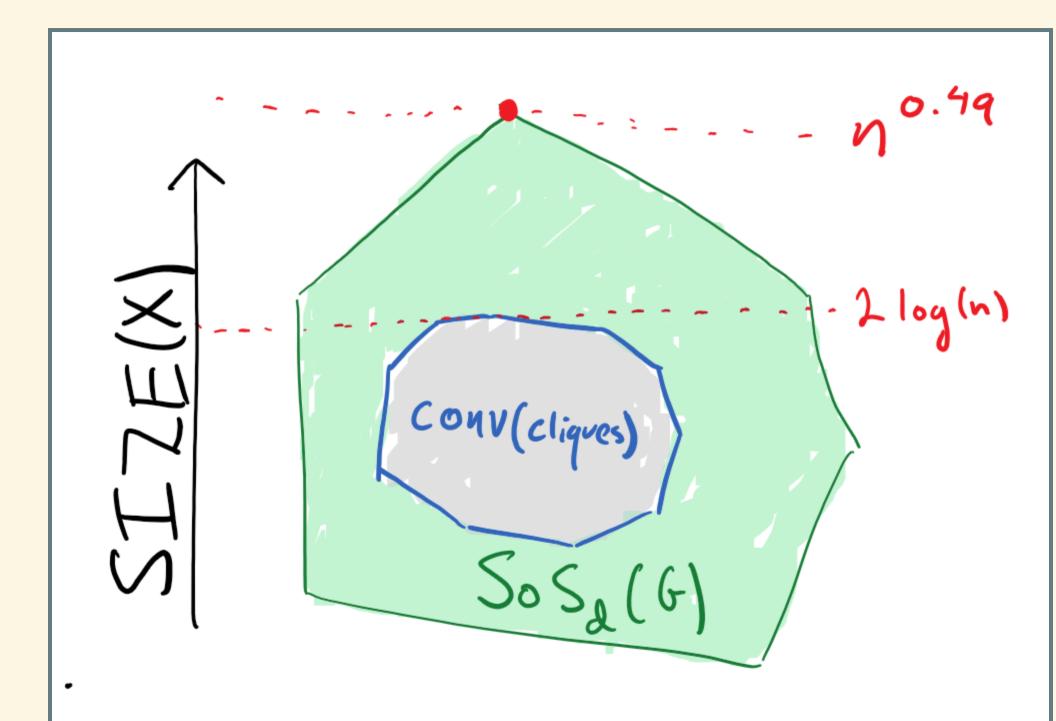


Regime of interest: $d < o(\log n)$.

Convex Relaxations for Planted Clique

If $\max_{X\in SoS_d(G)}SIZE(X)\geq n^{0.49}$, output planted else random.

Question: How big is $\max_{X \in SoS_d(G)} SIZE(X)$ in the random case? (If $\ll \sqrt{n}$, we can beat the spectral algorithm!)



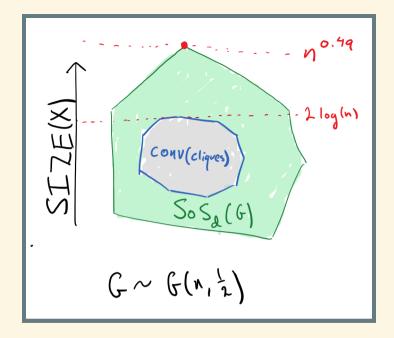
 $G \sim G(n, \frac{1}{2})$

Goal: $X=X(G)\in SoS_d(G)$ so that $\sqrt{n}\geq \mathbb{E}_{G\sim \mathbb{G}(n,1/2)}SIZE(X(G))\geq n^{0.49}$

Goal: $X = X(G) \in SoS_d(G)$ so that $\mathbb{E}_{G \sim \mathbb{G}(n, 1/2)}SIZE(X(G)) \geq n^{0.49}$

Prior work [FK '04, folklore]: X(G) feasible for LP, basic SDP, spectral, Sherali-Adams, Lovasz-Schrijver+ with $SIZE(X(G)) \ge n^{0.49}$ w.h.p.

Related [MPW '15, DM '15, HKPRS '16]: $X(G) \in SoS_d(G)$ $\mathbb{E}_{G\sim\mathbb{G}(n,1/2)}SIZE(X(G)) \geq n^{1/\mathrm{poly}(d)} pprox n^{0.001}$ Same X(G) cannot work for tight SoS bound [Kelner]



Original Goal: $X = X(G) \in SoS_d(G)$ so that $\mathbb{E}_{G \sim \mathbb{G}(n, 1/2)}SIZE(X(G)) \geq n^{0.49}$

Difficult to construct $X(G) \in SoS_d(G)$ ($\ensuremath{\textcircled{\sc semidefinite}}$ highdimensional positive-semidefinite matrices)

New (harder) Goal (*pseudocalibration*) : Construct $X = X(G) \in SoS_d(G)$ which shares more properties of a planted clique than just $SIZE(X(G)) \ge n^{0.49}$.

New (harder) Goal (pseudocalibration) : $X = X(G) \in SoS_d(G)$ so that $\mathbb{E}_{G \sim \mathbb{G}(n,1/2)} T_G(X(G)) = \mathbb{E}_{\text{planted}} T_G(1_{\text{clique}})$ for some family $\{T_G : \mathbb{R}^n \to \mathbb{R}\}$ of G-dependent linear functions ("tests"), including SIZE.

Example: $T_G(1_{\text{clique}}) = \text{number of } 4\text{-cliques containing a typical clique vertex.}$

Lemma: If $\{T_G\}$ = linear functions whose coefficients are low-degree polynomials in entries of A_G and X(G)satisfies

1. $\mathbb{E}_{G \sim \mathbb{G}(n,1/2)} T_G(X(G)) = \mathbb{E}_{\text{planted}} T_G(1_{\text{clique}})$ 2. $\mathbb{E}_{G \sim \mathbb{G}(n,1/2)} \|X(G)\|_2^2$ is "small"

then with high probability $X(G) \in SoS_d(G)$ for $d = o(\log n)$ and $SIZE(X(G)) \geq n^{0.49}.$

Lemma: X(G) satisfying these conditions exists.

 $SoS_d(G)$ thinks there is an $n^{0.49}$ -size clique in

$G \sim \mathbb{G}(n, \overline{2}).$

WRAPPING UP

(Nearly) resolved "SoS versus planted clique" using new *pseudocalibration* approach.

Future work/open problems: Pseudocalibration suggests SoS lower bound construction for other planted problems.

THANKS! QUESTIONS?