
PREVIOUS RESEARCH
My research interests are at the intersection of theory of computation and mathematics, espe-

cially logic. My research across three different projects over the past two years has explored a
variety of points in this intersection, and, avoiding premature specialization, spans topics in both
sides of the “Theory A” / “Theory B” divide.

Small Circuits and Random Strings In Summer 2011 I got my first taste of research at the
DIMACS REU at Rutgers University. For eight weeks there and several months afterwards I
worked with Eric Allender and his collaborators to characterize complexity classes defined by
reducibility to the set of Kolmogorov-random strings, culminating in [3].

Background: There is a growing body of evidence to suggest a useful connection between the set
of Kolmogorov-random strings and the complexity classes P, NP, PSPACE, NEXP, EXPSPACE,
and BPP. We need some definitions; see [4] for details. Where U is a universal Turing machine,
let CU(x) be the length of the shortest d so that CU(d) = x; thus CU provides a measure of com-
pressibility. A somewhat better-behaved measure KU is analogous but for a technical constraint on
the machine U . A string is Kolmogorov-random if KU(x)≥ |x|. We denote this set RKU .

It is known that RKU is Turing-equivalent to the halting problem, which makes it at first very
surprising that relativizations of common complexity classes to RKU could look anything like com-
plexity classes. However, known efficient (i.e., polynomial) reductions from the halting problem
to RKU are nonuniform (i.e., are computed with circuits rather than machines). This is the first
hint that something like PRKU might be of interest to a complexity theorist. It turns out that further
technical restrictions must be made in order to get something that looks like a complexity class (in
particular, we must do something to get rid of the undecidable sets that may remain in PRKU). Vary-
ing these technical restrictions results, surprisingly, in a variety of classes which can be positioned
among the common complexity classes named above. See [2] for details.

Our Work: We concerned ourselves with one such class, C , for which it is known that BPP ⊆
C ⊆ PSPACE. We conjecture that the upper bound on C can be improved to PSPACE∩P/poly.

During the Summer I worked with Professor Allender to extend existing incompressibility-based
techniques and improve partial results towards the conjectured upper bound. I discovered several
novel extensions to the existing techniques, which resulted in a number of technical structural
results characterizing the nature of advice strings that might be used in a P/poly upper bound. The
work became more collaborative in the Fall when a surprising connection to the proof theory of
certain extensions to Peano Arithmetic surfaced and, concurrently, two new collaborators joined
the project. The shift taught me about the occasional necessity of making large changes to a
research approach and about how to collaborate across locations and time zones.

In the end, we used the connection to proof theory to establish a stronger conjecture, conditioned
on the provability of certain true sentences in particular extensions of Peano Arithmetic. Later
work by Buhrman and Loff, while supporting our conjectured upper bound, disproves our stronger
conjecture, thus transfering our result to an independence theorem for Peano Arithmetic.

Broader Impacts: If, as seems likely, C can be upper-bounded by PSPACE∩P/poly, then the
lack of complexity classes between BPP and PSPACE∩P/poly motivates the conjecture C =BPP,
a proof of which could provide a deep connection between derandomization and Kolmogorov
complexity. This in turn raises the question: could we use this characterization of BPP towards a
proof of P= BPP? Some of the bounds in the area (though not the containment BPP⊆ C) do use
nonrelativizing techniques, although it seems that new nonrelativizing techniques would be needed
to achieve P = BPP. Progress here, however, would potentially vastly deepen our understanding
of computation in general. Again, see [2] for details.

1

Language Support for Declarative Web UIs In Summer 2012 I interned on Google’s Dart team,
led by Lars Bak, creator of Java’s Hotspot and Chrome’s V8, state-of-the-art just-in-time compilers.

Background: Dart is a new client-and-server-side language for the web, designed to address
many of the problems encountered when writing large web applications in Javascript (JS). These
include slow startup, since the object hierarchy must be initialized imperatively, poor maintain-
ability and support for code management tools , since JS has no type annotations or static type
checking, and poor code reusability, since the lack of a built-in class-based object system has led
to many conflicting implementations of class systems. Dart addresses these problems and more,
while working within the constraint that it must run both on its own virtual machine and compile
well to JS. In addition, Dart is the first mainstream language with optional static typing, bringing
the advantage that types can be written where they are useful for code readability or performance
and need not be written elsewhere.

My Work: The lack of encapulation in HTML, together with the many conflicting implementa-
tions of class systems in JS, has led to fragmentation and poor encapsulation in the world of JS
UI frameworks. This has led browser teams to propose modifications to the underlying platform.
I worked to adapt the very early prototype JS platform modifications allowing well-encapsulated
HTML-based widgets in [1] to something which fit Dart’s class-based object orientation. This
required designing new code generation in the dart2js compiler to allow Dart classes to extend
browser-native objects. In the process, I contributed to the design of Dart’s main client-side web
programming library, designed the isolation and encapsulation model for Dart UI components, and
contributed to a templating language for Dart data binding. All of these now have significant user
bases. The work was highly collaborative, with frequent design meetings guiding development.

Broader Impacts: Dart has the potential for enormously broad impact by drastically lowering
the engineering cost to build large, web-based applications with rich and responsive UIs. Indeed,
achieving responsive UIs for web-based apps has been a stumbling block to their wider develop-
ment, and has traditionally required convoluted programming techniques available only to large
companies—Google, Microsoft, etc.—able to devote vast engineering resources to the design and
upkeep of their products. By lowering that barrier, Dart in general and Dart’s UI framework in par-
ticular will help to bring web-app development to much more of the engineering world, enabling
applications in areas with historically lower profit margins but great societal impact: healthcare
systems, nonprofit support, etc. These applications will bring with them all the attendant benefits
of the web, e.g., mobile accessibility and data security.

Lower Bounds in Communication Complexity In Fall 2011 I began work with Professor Paul
Beame at the University of Washington. After an eight-month reading course on a variety of topics
in complexity, in Spring 2012 we began working on lower bounds in communication complexity.
For details on this work and ideas stemming from it, see my research proposal.
References
[1] Introduction to web components. http://dvcs.w3.org/hg/webcomponents/raw-file/tip/explainer/

index.html. Accessed: 10/28/2012.
[2] E. Allender. Curiouser and curiouser: The link between incompressibility and complexity. Proc. Computability

in Europe, 2012.
[3] E. Allender, G. Davie, L. Friedman, S. B. Hopkins, and I. Tzameret. Kolmogorov complexity, circuits, and the

strength of formal theories of arithmetic. Submitted.
[4] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Springer, 3rd edition,

2008.

2

