Quantum Entropy Scoring for Fast Robust Mean Estimation and Outlier Detection

Yihe Dong (Microsoft Research), Sam Hopkins (UC Berkeley), Jerry Li (Microsoft Research)

Problem setup

• Given a distribution D over \mathbb{R}^d with mean μ , let $X \in \mathbb{R}^{n \times d}$ be n i.i.d. samples from D, with ϵ -fraction of them corrupted, efficiently detect the corrupted data and estimate the sample mean $\hat{\mu}$, with good error bound.

- This is **nontrivial**: Naïve estimates have errors that scale with dimension.
- Many applications: robust regression; detecting fraud, medical anomalies, network traffic irregularities; etc.

Prior Work

- Naïve spectral: filtering method based on projection onto top eigenvector, $\tilde{O}(nd^2)$ complexity.
- Best prior result:
 - $\tilde{O}(\min(nd^2, nd/\epsilon^6))$ time complexity.
 - *d*-independent error bound: $\|\mu \hat{\mu}\|_2 \le O(\epsilon)$.

• Collective inductive bias can be detected by the spectra.

Our contribution

- *QUE*-scoring: nearly linear time complexity $\tilde{O}(nd)$.
- *d*-independent error bound.
- *QUE* **interpolates** between scores based on l_2 -norm and projection onto the top eigenvalue, controlled by α .
 - Inspecting multiple directions at once.

$$QUE(X_i) = (X_i - \mathbb{E}[X])^{\top} U(X_i - \mathbb{E}[X]), \ U = \frac{\exp(\alpha \operatorname{cov}(X))}{\operatorname{tr}(\exp(\alpha \operatorname{cov}(X)))}$$

- Lower $\alpha \rightarrow$ like l_2 , higher $\alpha \rightarrow$ like naïve spectral.
- Fast computation possible by combining
 - fast Johnson-Lindenstrauss.
 - Chebyshev expansion of exp(cov(X)).
 - fast Hadamard transform.
- Works well in high dimensions

Experiments: datasets

- Synthetic:
 - Inliers: i.i.d. samples from *N*(0, Id).
 - Outliers: i.i.d. samples from mixture of Gaussians $\int_{T_{r}}$

$$\mathbb{V}(\sqrt{\frac{k}{\epsilon}}e_i,\sigma^2\mathrm{Id}).$$

- Text:
 - Inliers: word embeddings of sections of *Sherlock Holmes.*
 - Outliers: word embeddings of Wikipedia articles.
- Image:
 - Inliers: CIFAR images
 - Outliers: images with corrupted pixels

