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Statistics in high dimensions with large data sets forms the basis for modern machine learning and data
science. Despite extraordinary successes in practice and the potential for tremendous further impact, we
have limited theoretical understanding of the basic algorithmic building blocks for statistics in high di-
mensions. Traditional statistics, high-dimensional probability, and the worst-case approach to algorithms
all provide tall shoulders to stand on, but each suffers limitations. Statistics and probability often disre-
gard computation: the algorithms they suggest typically have exponential running times. The worst-case
approach to algorithms disregards niceness of data. It incorrectly predicts that problems routinely solved in
practice are computationally hard. Building a theory of algorithms for high-dimensional statistics is a grand
challenge for computer science, statistics, and mathematics, to answer the questions:

Which problems in high-dimensional statistics have efficient algorithms?
What are the best algorithms for such problems?

My work bridges computation and statistics with the aim of discovering foundational principles for
algorithm design and the origins of computational hardness in statistics. Towards this goal, I use a
powerful problem-independent algorithmic toolkit arising from convex optimization (the Sum of Squares
method, or SoS) to design algorithms with provable guarantees and to shed light on hardness [L01; P03].
Problem-independence leads to breadth: my work so far spans clustering, robust and heavy-tailed statis-
tics, community detection, sparse recovery, tensor methods, optimization in noisy landscapes, and even
cryptography. Along the way, in joint and single-author works, I have solved major algorithmic problems
in statistics, giving:

(1) The first algorithm to beat greedy clustering for high-dimensional Gaussian mixture models [HL18],
breaking a 20-year barrier and leading to an explosion of algorithms [KKM18; RY20; KKK19; CLM19].1

(2) A polynomial-time computable high-dimensional median [H19], leading to information-theoretically
optimal estimators in heavy-tailed statistics and a flurry of algorithmic developments [CFB19;
LD19; LLVZ19; CHKRT19].

A second line of my work studies computational hardness in statistics. My work introduced pseudocali-
bration, a new technique for proving lower bounds against convex programming-based algorithms, which
led to the strongest-known lower bounds for planted clique and sparse PCA [BHKKMP16; HKPRSS17].

Finally, I leverage insights from algorithms with strong guarantees but slow running times to design
algorithms which run fast on large data sets. For example, my work gives the first nearly-linear time
algorithm for high-dimensional mean estimation with corrupted samples [DHL19] and fast algorithms for
tensor decomposition [HSS19; HSSS16]. I run experiments to validate the speed, robustness, and accuracy
of these algorithms [HSS19; HSS15].

I take a theory of computing approach by focusing on problem-independent algorithm design strategies
arising from convex optimization and pursuing hardness results in addition to algorithms. In the rest of
this statement, I will describe this approach in more detail, address its broader consequences outside of
algorithms for statistics, and discuss future work on graphical models, connections to statistical physics,
and optimal hypothesis tests.

Beyond a Problem-by-Problem Approach. A theory of algorithms is more than just a list of algorithms:
it should offer unifying principles, ideally leading both to problem-independent algorithm-design recipes
and rigorous evidence for hardness. The worst-case theory of algorithms has principles like this, such as

1Similar results were obtained simultaneously by [DKS18; KSS18].
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convexity and NP-hardness, suggesting broad algorithm-design paradigms and explaining computational
hardness. Practitioners also have re-usable algorithms, such as MCMC and stochastic gradient descent.

By contrast, at present, algorithms in statistics with rigorous analyses are largely designed on a problem-
by-problem basis. This leaves little opportunity to re-use ideas or to establish hardness, especially because
NP-hardness is rarely meaningful in statistics – right now, often the best evidence that no efficient algorithm
exists for a given statistics problem is just that we have not found one yet.

Problem-Independence, Hardness, and Sum of Squares. My work pursues the beginnings of a broad the-
ory of algorithms for high-dimensional statistics via the SoS method. SoS offers problem-independence
in algorithm design, as witnessed by its breadth: SoS has found applications across theoretical computer
science, statistics, optimization, operations research, control theory, quantum information, and more [H19;
CSB11; NPA07]. At its heart, SoS is a family of powerful convex programs which generalize classic al-
gorithms tools like linear programs and spectral methods. A collection of general-purpose algorithmic
building blocks has grown around it, together with re-useable design patterns to put them together into
sophisticated algorithms. My work leverages these strategies and has made major contributions back to
the SoS toolkit [HS17; HL18].

SoS also provides an avenue to establish computational hardness: it captures so many algorithmic tech-
niques that showing no SoS algorithm solves a given problem is often the strongest form of evidence within
reach for computational hardness in statistics. Pseudocalibration, introduced in my work [BHKKMP16], is
currently the only problem-independent approach to rule out SoS algorithms for many statistics problems.

Beyond Statistics: Optimization, Cryptography, and More. SoS is a fundamental tool for convex opti-
mization. By honing our understanding of what it can achieve, my work sheds light on computational
questions well beyond statistics. Works of mine and others witness this, leveraging new approaches to
analyze SoS to obtain new algorithms in quantum computing, combinatorial optimization, cryptography,
and more. For example, my collaborators and I used SoS-derived ideas to give the first nontrivial linear
programming-based approximation algorithm for the Max-Cut problem [HST19]. In cryptography, my
work rules out a major potential approach to indistinguishability obfuscation [BHJKS19]. SoS is also the
most promising avenue to disprove the infamous Unique Games conjecture [BBHKSZ12].

FUTURE DIRECTIONS

I will continue to investigate algorithms and computational complexity for fundamental problems in
high-dimensional statistics. Significant near-term algorithmic progress via SoS appears particularly pos-
sible in supervised learning, where I will focus my algorithm-design efforts in the next few years. In
addition, below are broader directions I aim to take in the future.

Classification and Optimal Algorithms. Problem-independence alone is not enough: we ultimately need
results which tell us which problems are easy, which are hard, and why, by identifying simple criteria
which trace out the boundary between the tractable and the intractable. Classification theorems like this
are crowning achievements in other areas of computer science; they also often identify optimal polynomial
time algorithms. For example, in constraint satisfaction, SoS algorithms are known to be optimal among
polynomial-time ones [R08; B17] (under relatively standard complexity hypotheses).

My work on lower bounds already suggests a classification conjecture for a wide range of high-dimensional
statistics problems. By describing optimal polynomial-time hypothesis tests, this would answer the main
question at the beginning of this statement – Which problems in high-dimensional statistics have efficient algo-
rithms? – for at least a substantial class of hypothesis testing problems. A major goal of my future work
is to prove such a conjecture. This will be a challenging endeavor, but there are already interesting results
along the way. Using the pseudocalibration lens from my work on lower bounds, [HS17] obtains new al-
gorithms and unifies existing ones for community detection in stochastic blockmodels. [HKPRSS17] views
SoS hypothesis testing algorithms through the same lens to give a problem-independent characterization
of SoS algorithms in terms of spectral algorithms.
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Graphical Models. Graphical models are key tools in Bayesian statistics, to express prior distributions
with complex dependency structures. Marginalization is the task of computing the conditional (posterior)
distribution of hidden variables in the model from observed values of the rest. It is hard in the worst case,
but practitioners use heuristic algorithms with great success – Markov-Chain Monte Carlo, Variational
Bayes, and more. I aim to build a theory of marginalization based around convex programming and the
SoS method to understand when marginalization is possible in polynomial time. As a first step, in ongoing
work joint work I am investigating SoS-based algorithms for marginalization in simple graphical models
arising from random constraint satisfaction.

A Bridge to Statistical Physics. A line of work using ideas from phase transitions in statistical physics
also holds promise to predict and explain algorithmic (in)tractability in statistics [MMM09]. So far, our
SoS-based theory makes exactly the same predictions about algorithmic tractability as the physics-based
theory for a wide range of problems: this suggests a hidden connection between the two. Building a bridge
between these apparently unrelated families of ideas – convex programming and phase transitions – is one
of my long-term aims.
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