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1 Introduction to Clustering
In a clustering problem, we are given n items and associated information. The goal is to find a
good partition of the items into k parts, where the k parts correspond to some underlying similarity
between some of the samples.

Example 1. Examples of clustering problems are:

• Given G = (V,E) with |V | = n, we want to cluster the vertices into k disjoints parts
S1, S2, . . . , Sk, so that we minimize edges between different clusters, i.e. E(Si, Sj) for i 6= j.
This intuitively corresponds to identifying a structure of k communities in a graph.

• Given n vectors x1, . . . , xn ∈ Rd,we want to cluster them respecting geometry. This includes
clustering based on distance, but also more exotic cases like clustering for meshes (see [2],
for example, for some clustering related to computer vision).

• Clustering in an n point metric space {d(xi, xj)}i,j∈[n], where clusters are formed by points
that are close to each other.

There are many interesting clustering-related computational problems, both in theory and in prac-
tice. Some that we will not discuss include determining what the “right” number of clusters is.
Today, we focus on the question of clustering when we already know the number of clusters k and
that a good clustering of size k exists.

Specifically, we consider a clustering problem Θ = {(S1, . . . , Sk), X)} where we receive X as an
input, S1, . . . , Sk are a partition of [n], and our goal is to find S1, . . . , Sk. (X could be a graph,
a set of vectors, etc.) We will assume that |S1| = · · · = |Sk| = n/k and that the problem is
identifiable. Formally, we require that there exists a map (maybe not efficiently computable) ζ :
X −→ (T1, . . . , Tk) such that, for all (S1, . . . , Sk, X), we must have |Ti ∩ Si| ≥ (1− δ)n/k.

Example 2. The main example for today clustering Gaussian mixture models. For k Gaussians
distributions D1, D2, . . . , Dk over Rd, given n samples X1, X2, . . . , Xn, sampled independently
from the mixture 1

k

∑k
i=1Di, we want to (approximately) recover the sets S1, S2, . . . , Sk, where Si

corresponds to the samples drawn from Di. (We describe this in more detail in Section 3 ).

So how do we cluster with SoS?
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2 Clustering with SoS
Here, we describe a meta-algorithm for clustering with SoS.

Algorithm 3. Suppose that for some ((S1, . . . , Sk), X) ∈ Θ there exist an input-specific (that is,
depending on X) axiom set PX of degree at most d and size nO(d) on variables ω1, ω2, . . . , ωn, z
such that:

1.

{
ω2
i = ωi,

∑
i

ωi = n/k

}
∪ PX `

∑
i∈Sa,j∈Sb

ωiωj ≤ δ
(n
k

)2

holds for any two different true

clusters Sa and Sb.

2. Whenever ω is the indicator of some true cluster Sa, the axioms PX are satisfied.

Then, by finding a pseudoxpectation Ẽ satisfying

{
w2
i = wi,

∑
i

wi = n/k

}
∪PX for which ||Ẽω||22

is minimized, one can recover in time nO(d) sets T1, T2, . . . , Tk such that |Si ∩ Ti| ≥ (1− δkO(1))n
k
.

Before proving Algorithm 3, we give some intuition about it. Note that the condition
∑

i∈Sa,j∈Sb
ωiωj

implies that ω cannot simultaneously assign a lot of weight on two different clusters. Therefore,
rounding with respect to ω or its higher moments (stay tuned!) will allow us to approximately re-
cover the true clusters. As we will show the rounding is simple. Thus, all the “magic” in designing
clustering SoS algorithms is in finding the right polynomials PX . We give a very simple example
of how to do this.

Example 4 (When we forget about the sweep line). Suppose that our data X1, X2, . . . , Xn comes
from the following model. There are k different unknown unit-length intervals (ai, ai + 1) on a
line, which are at least distance 10 apart (that is, ai + 11 < ai+1, for all i). Then, our n samples are
formed by taking n/k points in each interval. Our goal is to recover the sets of points belonging to
the same interval. Of course, this is a computationally trivial problem as we can just use a sweep
line argument... Nevertheless, it serves as a good example of how to use SoS.

How do we encode the fact that the distances between points in the same cluster are small, but they
are otherwise big? Imagining that ω was a true cluster indicator (or a distribution over such!), an
intuitive set of axioms PX is {ωiωj(Xi −Xj)

2 ≤ 1}i 6=j. Indeed, this gives the desired inequality in
Algorithm 3 as∑

i∈Sa,j∈Sb

ωiωj ≤
∑

i∈Sa,j∈Sb

ωiωj
(Xi −Xj)

2

100
≤ 1

100

∑
i∈Sa,j∈Sb

ωiωj(Xi −Xj)
2 ≤

1

100

∑
i∈Sa,j∈Sb

1 =
1

100

(n
k

)2

.

All of the above inequalities follow in SoS. The first simply because (Xi − Xj)
2 > 100 and

ωiωj = ω2
i ω

2
j (in SoS) and the second from the axioms PX . So, using Algorithm 3, we manage to

cluster to 99% accuracy... Of course, it might be disappointing that for this trivial problem, our SoS
based approach doesn’t give 100% accuracy. We can actually fix this by iterating

1

100

∑
i∈Sa,j∈Sb

ωiωj(Xi −Xj)
2 ≤ 1

104

∑
i∈Sa,j∈Sb

ωiωj(Xi −Xj)
4...

It is easy to show that all of these steps can be done in SoS, but now we move to the less trivial
problem of rounding.
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2.1 The Rounding Procedure
Now let’s imagine we are given a pseudoexpectation Ẽ in variables ω1, . . . , ωn which satisfies PX .
One seemingly-ideal situation would be that it is actually the low-degree moments of a distribution
on cluster indicators which is supported on a single cluster-indicator vector, say 1Sa , the indicator
vector for Sa. Then Ẽω = 1Sa and we could easily identify Sa.
It turns out that there are two main issues with this approach. First, it requires that Ẽω is close to
a cluster indicator. However, as we will see in a bit, Ẽ might actually correspond to a nontrivial
distribution over cluster indicators. Second, even if we get lucky and Ẽ is concentrated on one
cluster, what do we do after identifying that one cluster?

An alternative possibility is that Ẽ is the low-degree moments of the uniform distribution on
cluster indicators, 1S1 , . . . , 1Sk

. In this case we can hope that Ẽ contains information about all
S1, . . . , Sk, but we can no longer read that information off of the first moments, as Ẽωi = 1/k for
each i.

So, what could we do in this case? We can read the clusters off of the second moments Ẽωω>,
since Ẽωiωj is nonzero if and only if i, j belong to the same Sa.

We will make this general strategy work for (almost) any pseudoexpectation Ẽ which satisfies
PX , as we know that the very strong condition Ẽ

∑
i∈Sa,j∈Sa

ωiωj ≤ δ
(
n
k

)2 holds, simply because
Ẽ satisfies the axioms in Algorithm 3. As

∑
ωi = n

k
, it must also be the case that within clusters

the moments are large. Indeed,

k∑
a=1

∑
i,j∈Sa

Ẽωiωj =
(n
k

)2

−
∑
a6=b

∑
i∈Sa,j∈Sb

Ẽωiωj ≥

(n
k

)2

− k2δ
(n
k

)2

= n2(
1

k2
− δ),

which is much larger than δ(n/k)2 when δ � 1
kO(1) .

In fact, the only thing standing in our way is the first possibility we considered, that Ẽ could
be supported on a single cluster indicator (or, say, all but one of them). We avoid this situation by
requiring ‖Ẽω‖ to be as small as possible – this forces Ẽ to spread out over all of the clusters.
So, how do we use these second moments? Intuitively, ω should be a “distribution over true cluster
indicators”. Thus, conditioning that we are in one of the clusters, we can recover other points in it
as well. Formally, one rounding scheme that uses this idea is the following.

Algorithm 5. Given Ẽ, for a ∈ {1, 2, . . . k} :

1. Pick ia uniformly among the set of remaining items R = [n]\
⋃
s<a Ta and compute the

conditional pseudoexpectation Ẽ[·|ωia = 1].

2. Include each element j of R independently in Ta with probability Ẽ[ωj|ωia = 1].

Return the clusters T1, T2, . . . , Tk.

We will prove that with high probability, there exists an indexing of S1, S2, . . . , Sk such that
|Si ∩ Ti| ≥ n

k
(1− 16δk8) holds with high probability. We prove this in several steps.

First, minimality of ||Ẽω||22 implies that Ẽωi = 1
k

for each i. Indeed, this is true for the following
reason. Since each cluster indicator 1Sa satisfies all axioms, the (pseudo)-expectation Ẽa defined
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by Ẽaq(ω) := q(1Sa) satisfies the axioms.1 But then so does Ẽ′ := 1
k

∑k
a=1 Ẽ

a. Now, Ẽ′ satisfies
Ẽωi = 1

k
for all i. Since this clearly minimizes the two-norm ||Ẽω||22 among all pseudoexpectations

for which
∑

i Ẽωi = n
k
, the choice of Ẽ implies the desired condition. We continue with two

technical lemmas.

Proposition 6. Suppose that A ⊆ Sa is a set such that |A| ≥ n
k
(1 − ε) for some ε < 1/2 and let

i ∈ A. Then,
Ei∼Unif(A)Ẽ[

∑
j∈Sa

ωj|wi = 1] ≥ n

k
(1− ε− 2k2δ), and

Ei∼Unif(A)Ẽ[
∑

j∈[n]\Sa

ωj|wi = 1] ≤ 2nkδ

Proof. First, note that for any i ∈ A, we have

Ẽ[
∑
j∈[n]

ωj|ωi = 1] =
n

k
,

as
∑

j∈[n] ωj = n
k

is one of the axioms. Thus, the two inequalities above are equivalent. On the
other hand, note that

Ei∼Unif(A)Ẽ[
∑

j∈[n]\Sa

ωj|wi = 1] ≤ |Sa|
|A|

Ei∼Unif(Sa)Ẽ[
∑

j∈[n]\Sa

ωj|wi = 1] ≤

1

1− ε
k

n

∑
i∈Sa

Ẽ[
∑

j∈[n]\Sa

ωj|wi = 1] ≤

(1 + 2ε)
k

n

∑
b6=a

∑
i∈Sa,j∈Sb

Ẽ[ωiωj]/Ẽ[ωi] =

(1 + 2ε)
k2

n

∑
b 6=a

∑
i∈Sa,j∈Sb

Ẽ[ωiωj] ≤

(1 + 2ε)
k2

n

∑
b 6=a

δ
(n
k

)2

≤ (1 + 2ε)δkn ≤ 2δkn,

where in the last inequality we used the assumptions in Algorithm 3, before that the fact that
Ẽωi = 1

k
, and before that the definition of conditional pseudoexpectation.

Proposition 7. Suppose that we are at some step s of the rounding algorithm and there are at
least n

k
(1 − ε) elements of some true cluster Sa in R. Conditioned on the fact that is ∈ Sa, with

probability at least 1
k2
, we will add to Ts at least n

k
(1− 2k2ε− 4k4δ) elements from Sa and at most

n
k
4k4δ that are not in Sa.

Proof. We only prove the second statement as the proofs are the same. Note that the previous
proposition implies that in expectation, we add to Ta at most n

k
2k2δ elements. By Markov’s in-

equality, we add more than n
k
4k4δ with probability at most 1

2k2
. The other statement is equivalent,

except that we consider the number of elements of Sa we don’t add. Then, we do union bound over
the two statements.

1This is a real expectation, so it is also a pseudoexpectation.
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Using the last proposition, we can easily prove by induction that the following things happen to-
gether with high probability as long as δ < 1

k10
. For all steps a, the following simultaneously hold:

1. Each ia for a ∈ [k] belongs to a different cluster Sπ(a).

2. For each a ∈ [k],
∣∣(Sπ(1) ∪ Sπ(2) ∪ · · ·Sπ(a)

)
\ (T1 ∪ T2 · · · ∪ Ta)

∣∣ ≤ 12n
k
aδk7

3. For each a ∈ [k], |(T1 ∪ T2 · · · ∪ Ta)\
(
Sπ(1) ∪ Sπ(2) ∪ · · ·Sπ(a)

)
| ≤ 4n

k
aδk4.

Indeed, note that if the statements above are satisfied before some step a, then at step a we will
choose an item ia from a new set with probability at least

n
k
(k − a)− 12n

k
aδk7

n
k
(k − a)

> 1− 12δk8,

so we proved the first bullet point by induction. Then, applying Proposition 7 with ε = 4(a− 1)δk4

(since at most εn
k

elements of each true cluster that has not been selected have been added before
step a), we know that with probability at least 1

k2
, we will add to Ta at least n

k
(1− 4k4δ− 8ak6δ) >

n
k
(1 − 12k7δ) elements of the true cluster of ia and at most 4n

k
δk4 elements not from the cluster

(here we use δ < 1
k10

). Thus, the second and third bullets points continue to hold after step a.

All that is left to show to complete the proof is that everything happens with high probability si-
multaneously. Note, however, that we apply Proposition 7 exactly k times. By union bound, with
probability at least 1− k × 1

k2
, every time the bounds on |Ta\Sπ(a)| and |Sπ(a)\Ta| hold. Similarly,

at each step we select a new element with probability at least 1− 12δk8, so this happens with prob-
ability at least 1− 12δk9. Therefore, with probability at least 1− 12δk9− k−1, the statement holds.
As δ < 1

k10
and k = ω(1) (as k and d are polynomially related), the induction is complete.

To finish, note that the last two bullet points clearly imply that

|Sπ(a) ∩ Ta| ≥
n

k
− |Sa\Ta| ≥

n

k
(1− 16δk8),

as desired. Indeed, at most 12δk7 n
k

of the elements of Sa are in T1 ∪ T2 ∪ · · · ∪ Ta−1 by the third
bullet point, and at most another 4δk4 n

k
of the elements of Sa are not in T1 ∪ T2 ∪ · · · ∪ Ta1 ∪ Ta by

the second bullet point, so at worst Ta misses 16δk8 n
k

of the elements of Sπ(a).

The analysis of the rounding algorithm is finished.

3 Gaussian Mixture Models
So far, in Algorithm 3 we have seen that in order to design an SoS clustering algorithm, it is enough
to find well-behaved input-specific polynomials PX and construct the set of axioms

{ω2
i = ωi ∀i,

∑
i

ωi =
n

k
} ∪ PX .

This allows us to find an appropriate pseudoexpectation satisfying these axioms and perform our
rounding scheme. Now, we turn to the main problem for today - clustering Gaussian mixtures.
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3.1 Model and Preliminaries
Set-Up: In a mixture model, k unknown independent distributions D1,D2, . . . ,Dk over Rd are
given. In our set-up, we focus on Di = N (µi,Σi). The problem of interest is the following. The
input X1, X2, . . . , Xn, consists of n independent variables distributed according to 1

k

∑
iDi. That

is, for each j ∈ [n] an independent cluster indicator cj ∼ Unif({1, 2, . . . , k}) is sampled and then
Xj is sampled independently from Dcj . The task is the following. Let Sc = {j ∈ [n] : cj = c} for
c ∈ [k] be the true clusters. We need to recover (approximately) the sets S1, S2, . . . , Sk. The input
consists of the samples X1, X2, . . . , Xn.

Different regularity assumptions imposed on this problem are studied. For this lecture, we assume
a second-moment bound Σi � I. We also make the simplifying assumption that every true cluster
contains exactly n

k
samples. This condition can be easily removed using concentration inequalities

for the random variables |Sc|. Implicit today will also be a polynomial relationship between the
dimension and number of clusters, that is k = dΘ(1).

Clearly, distances between means will play a crucial role. If two of the means, say µ1 and µ2 are
nearly the same, it is information theoretically impossible to distinguish2 N (µa, I) and N (µb, I).
Thus, we introduce the parameters ∆a,b = µa − µb. Central to the analysis will be a lower bound
∆ on mina6=b ||∆a,b||2.

This immediately leads us to a first idea about an SoS clustering method.

A First Naive Approach: We can repeat the same idea as in the SoS proof of identifying interval
clustering on a line by encoding the fact that ||Xi − Xj|| is large if and only if Xi and Xj are in
different clusters. Explicitly, we form the axioms {ωiωj||Xi − Xj||2 ≤ c} for an appropriately
chosen c (so that with high probability, distances between pairs of samples from different clusters
are greater than distances between pairs of samples from the same cluster). It turns out that this is
indeed a viable approach, but it only works whenever ∆a,b >> k1/4 holds for any a 6= b. Can we
do better?

It turns out that we can. A purely information-theoretic result (leading to an exponential time
algorithm) is the following.

Theorem 8 ([6]). There exists an (exponential time) algorithm with the following guarantee. If
∆�

√
log k, using (dk)O(1) samples, one can cluster to 99% accuracy.

What about polynomial-time algorithms? A very recent result establishes that the above guarantee
is actually efficiently achievable for spherical Gaussians.

Theorem 9 ([5]). For any positive constant c > 0, one can cluster with 99% accuracy a mixture
of k spherical Gaussians (that is, Gaussians with covariance I) for which ∆ > (log k)

1
2

+c in time
poly(d, k) when n = poly(d, k).

When we allow for a quasipolynomial time, we can again achieve
√

log k, even assuming only
Σa � I .

Theorem 10 ([4, 3, 1]). There exists an algorithm using dO(log k) samples and time which clusters
with 99% accuracy when ∆�

√
log k.

2See, for example p.13 here for the KL divergence between two Gaussians.
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The theorem that we will prove is the following. Theorem 10 also follows from our proof, if we are
a little more careful with parameters.

Theorem 11 ([4, 3, 1]). For any ε > 0, if ∆ > kε, there exists a poly(n, d) clustering algorithm
that achieves 99% accuracy.

4 Gaussian Clustering with SoS
The idea behind improving the naive approach is to use more information about Gaussian random
variables. Since Gaussian random variables have very thin tails, the higher moments also behave
well. Namely, we have the following fact about single dimensional Gaussians. If N ∼ N (0, 1),
then it is well known that for any t,

E|N |t =
2t/2Γ( t+1

2
)

√
π

= O(t)t/2.

It turns out that a much stronger high-probability version of this equality holds, as we will see in a
bit. This motivates the construction of axioms which use the relatively small average t-th moment
within clusters and the much larger t-th moment between different clusters. This leads us to the
following axioms.

4.1 First Set of Axioms and SoS Proof
Axioms PX1,X2,...,Xn : For every unit vector v, we have the inequality AvX1,X2,...,Xn

given by

k

n

n∑
i=1

ωi〈Xi −
k

n

n∑
j=1

ωjXj, v〉t ≤ O(t)t/2,

where t is some parameter which we will choose later. At a first glance, we haven’t made much
progress. We have an uncountable collection of axioms - one inequality for each unit vector v in
Rd. We will deal with this problem later, however, and we will move on to an SoS proof. That is,
we need to show two things.

1. True Clusters Satisfy Axioms: That is, the true clusters satisfy each inequality

k

n

∑
i

ωi〈Xi −
k

n

∑
j

ωjXj, v〉t ≤ O(t)t/2.

We will not prove the statement, but will at least give some intuition what this expression looks
like for true clusters. Let ω be the indicator of some cluster Sa, corresponding to N (µa,Σa). Let
Xi = µa + Yi for i ∈ Sa where Yi ∼ N (0,Σa). Then,

k

n

∑
i

ωi〈Xi −
k

n

∑
j

ωjXj, v〉t =
k

n

∑
i∈Sa

〈Yi + µa −
k

n

∑
j∈Sa

(Yj + µa), v〉t =

k

n

∑
i∈Sa

〈Yi −
k

n

∑
j∈Sa

Yj, v〉t.

This is just the empirical t-th moment of a d-dimensional Gaussian; standard concentration tools
imply that it concentrates to its expectation uniformly for all unit v with poly(d) samples (for
constant t).
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2. The Axioms Imply a Small Overlap between Different Clusters: That is, we need to show
that for any two different clusters Sa and Sb, the axioms PX imply that∑

i∈Sa,j∈Sb

ωiωj ≤ δ
(n
k

)2

for δ = 1
poly(k)

. This can be proved in SoS as follows.

The first step is to include the geometry of the clustering problem via the t-th moments, which we
know should be small. Namely, we have∑

i∈Sa,j∈Sb

ωiωj =
∑

i∈Sa,j∈Sb

ωiωj
〈µa − µb,∆a,b〉t

||∆a,b||2t2
.

Now, we try to incorporate the fact that all points in a cluster are close to the mean by approximating
µ` by the weighted average defined by ω. That is, for µ(ω) := k

n

∑
j ωiXi, we have∑

i∈Sa,j∈Sb

ωiωj
〈µa − µb,∆a,b〉t

||∆a,b||2t2
=

∑
i∈Sa,j∈Sb

ωiωj
〈µa − µ(ω) + µ(ω)− µb,∆a,b〉t

||∆a,b||2t2
.

Now, from the homework, we know that there exists an SoS proof of the triangle inequality
||p+ q||ss ≤ 2O(s)(||p||ss + ||q||ss). Using it, we obtain∑

i∈Sa,j∈Sb

ωiωj
〈µa − µ(ω) + µ(ω)− µb,∆a,b〉t

||∆a,b||2t2
≤

2O(t)
∑

i∈Sa,j∈Sb

ωiωj
〈µa − µ(ω),∆a,b〉t + 〈µ(ω)− µb,∆a,b〉t

||∆a,b||2t2
=

2O(t)
∑
j∈Sb

∑
i∈Sa

ωiωj
〈µa − µ(ω),∆a,b〉t

||∆a,b||2t2
+ 2O(t)

∑
j∈Sa

∑
i∈Sb

ωiωj
〈µb − µ(ω),∆a,b〉t

||∆a,b||2t2
.

Now, since
∑

i ωi = n
k
, for any polynomial p(ω), there exists an SoS proof that

∑
i ωip(ω) =

n
k
p(ω), again as in the homework. Therefore, the above expression becomes

2O(t)n

k

∑
i∈Sa

ωi
〈µa − µ(ω),∆a,b〉t

||∆a,b||2t2
+ 2O(t)n

k

∑
j∈Sb

ωj
〈µb − µ(ω),∆a,b〉t

||∆a,b||2t2
.

We only bound the first term due to symmetry. We now want to incorporate our axioms. Again
using the triangle inequality,

2O(t)n

k

∑
i∈Sa

ωi
〈µa − µ(ω),∆a,b〉t

||∆a,b||2t2
= 2O(t)n

k

∑
i∈Sa

ωi
〈µa −Xi +Xi − µ(ω),∆a,b〉t

||∆a,b||2t2
≤

2O(t)n

k

∑
i∈Sa

ωi
〈µa −Xi,∆a,b〉t

||∆a,b||2t2
+ 2O(t)n

k

∑
i∈Sa

ωi
〈Xi − µ(ω),∆a,b〉t

||∆a,b||2t2

Since the entire expression 〈µa−Xi,∆a,b〉t
||∆a,b||2t2

is just a real number, ω2
i = ωi clearly proves that

2O(t)n

k

∑
i∈Sa

ωi
〈µa −Xi,∆a,b〉t

||∆a,b||2t2
≤ 2O(t)n

k

∑
i∈Sa

〈µa −Xi,
∆a,b

||∆a,b||2
〉t

||∆a,b||t2
.
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Using that ∆a,b

||∆a,b||2
= 1,we know that with high probability, each term 〈µa−Xi,

∆a,b

||∆a,b||2
〉t is of order

O(t)t/2, so the last expression is bounded with high probability by

n

k

∑
i∈Sa

O(t)t/2

||∆a,b||t2
=
(n
k

)2 O(t)t/2

||∆a,b||t2
.

Similarly, for the other term, the axioms PX1,X2,...,Xn directly imply that

2O(t)n

k

∑
i∈Sa

ωi
〈Xi − µ(ω),∆a,b〉t

||∆a,b||2t
= 2O(t)n

k
||∆a,b||−t2

∑
i∈Sa

ωi〈Xi −
k

n

n∑
i=1

ωiXi,
∆a,b

||∆a,b||2
〉t ≤

(n
k

)2 O(t)t/2

||∆a,b||t2
.

Therefore, the entire expression is bounded in SoS by(n
k

)2 O(t)t/2

||∆a,b||t2
.

Now, we see that if ||∆a,b|| > kε, it is enough to choose t >> 1
ε

such that

O(t)t/2

||∆a,b||t2
=

1

poly(k)
.

In other words, we have managed to design a poly(n, d) algorithm for separation ∆ = kε for any
constant ε, improving the k1/4 barrier of the naive approach.

4.2 Making the Axiom Space Finite

Recall that we constructed an uncountable axiom space to prove that
∑

i∈Sa,j∈Sb
ωiωj ≤ δ

(
n
k

)2
.

However, for an efficient algorithm we want the axiom space to be of size (nd)O(1). How can we
do this?

A natural idea is to discretize the unit sphere by, say, an ε-net and approximate each unit vector v
by a (linear) combination of the vectors in the respective net. This, however, will still result in an
axiom family of exponential size as ε-nets on the unit sphere generally have exponential size.

Another idea is to find some polysized family of axioms QX such that QX ` PX (where PX is
the uncountable family constructed in the previous section). How should we do this? We start by
exploring the case for small t.

The case t = 2 : We want axioms which imply that

k

n

n∑
i=1

ωi〈Xi − µ(ω), v〉2 ≤ O(1)

holds for any unit v. Note, however, that the above expression is simply

vT

[
k

n

n∑
i=1

ωi(Xi − µ(ω))(Xi − µ(ω))T

]
v.
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Thus, it is enough that the spectral norm of M =

[
k

n

n∑
i=1

ωi(Xi − µ(ω))(Xi − µ(ω))T

]
is at most

O(1). But we already know how to encode this condition from the lecture on Robust Mean Estima-
tion Claim 2.7 here. We simply need to add the matrix of slack variables B and the axiom

k

n

n∑
i=1

ωi(Xi − µ(ω))(Xi − µ(ω))T = O(1)I −BBT .

What about the next case, t = 4?
The case t = 4 : Going through the same logic, we compute

k

n

n∑
i=1

ωi〈Xi − µ(ω), v〉4 = (v⊗2)T
[
k

n

∑
ωi
[
(Xi − µ(ω))⊗2

] [
(Xi − µ(ω))⊗2

]T]
(v⊗2).

Seems like we just need an SoS axiom implying that

k

n

∑
ωi
[
(Xi − µ(ω))⊗2

] [
(Xi − µ(ω))⊗2

]T � O(1)I.

Except that there is a caveat. This fact does not hold for true clusters. Namely, for an indicator ω
of cluster a, if we set Yi = Xi − k

n

∑
j∈Sa

Xj for i ∈ Sa, the above expression becomes

k

n

∑
i∈Sa

[
Y ⊗2
i

] [
Y ⊗2
i

]T
.

Now, consider how this two-form acts on the unit vector u ∈ Rd⊗d given by ui,j = 1[i=j]√
d
. The

respective quantity is

ut

[
k

n

∑
i∈Sa

[
Y ⊗2
i

] [
Y ⊗2
i

]T]
u =

k

n

∑
i∈Sa,j1,j2∈[d]

Y 2
i,j1
Y 2
i,j2

1

d
=

k

nd

∑
i∈Sa,j1,j2∈[d]

(Xi,j1 −
k

n

∑
t∈Sa

Xt,j1)
2(Xi,j2 −

k

n

∑
t∈Sa

Xt,j2)
2.

Note that in expectation, (when the covariance matrix is I)

E((Xi,j1 −
k

n

∑
t∈Sa

Xt,j1)
2) = (1− k

n
)2E(Xi,j1) +

∑
t6=i

k2

n2
E(Xt,j1) = Θ(1).

As we are taking the sum of n
k
d2 summands of order 1, in expectation the above expression evalu-

ates to Θ(d) = ω(1) rather than a constant. So, is approach doomed?

It turns out that it is not. Even if the matrix

k

n

∑
i∈Sa

[
Y ⊗2
i

] [
Y ⊗2
i

]T
has singular values of non-constant order, it is still the case that when it acts on unit vectors of the
form v⊗2, its spectral norm is constant with high probability. That is,

(v⊗2)t

[
k

n

∑
i∈Sa

[
Y ⊗2
i

] [
Y ⊗2
i

]T]
(v⊗2) ≤ 1 (1)

10

https://tselilschramm.org/sos-paradigm/notes22/00-proofs-to-algs.pdf


holds with high probability (we defer this proof to Lemma 12).

Something more can be show to hold true: in fact, as long as n ≥ (kd)O(1), standard concen-

tration results imply that every entry of the matrix k
n

∑
i∈Sa

[
Y
⊗t/2
i

] [
Y
⊗t/2
i

]>
concentrates, and

consequently that, with high probability,

k

n

∑
i∈Sa

[
Y
⊗t/2
i

] [
Y
⊗t/2
i

]T
� EZ∼N (0,Id)

[[
Z⊗t/2

] [
Z⊗t/2

]T]
+ 0.01I

Therefore, it is enough to add the slack variables B ∈ Rd
t
2×d

t
2 and our axiom QX(ω,B) becomes

k

n

∑
ωi
[
(Xi − µ(ω))⊗t/2

] [
(Xi − µ(ω))⊗t/2

]T
= EZ∼N (0,Id)

[[
Z⊗t/2

] [
Z⊗t/2

]T]
+0.01I−BB>

(Note that EZ∼N (0,Id)

[[
Z⊗t/2

] [
Z⊗t/2

]T] is just a real matrix and can be computed in time dO(t)).
This axiom implies the SoS inequality in additional indeterminates v = v1, . . . , vd

(v⊗t/2)T
[
k

n

∑
ωi
[
(Xi − µ(ω))⊗t/2

] [
(Xi − µ(ω))⊗t/2

]T]
(v⊗t/2) ≤

(v⊗t/2)T
[
EZ∼N (0,I)

[[
Z⊗t/2

] [
Z⊗t/2

]T]
+ 0.01I

]
v⊗t/2 ≤ O(t)t/2‖v‖t2,

as desired. The respective SoS proofs are now in indeterminates (ω,B). We know that with high
probability there exists a some Ba for each true cluster Sa such that (1Sa , Ba) satisfies the con-
structed axioms.
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A Omitted Details
Lemma 12. Let (Y1, Y2, . . . , Ys) ∼ N 0,Σ)⊗s, where s = n

k
and Σ � I. Then, for any unit vector

v,
1

s
E

s∑
i=1

〈Yi −
1

s

s∑
j=1

Yj, v〉4 ≤ O(1).

Proof. First, note that it is enough to consider Σ = I as otherwise for standard Gaussian vectors
Zi, we have

〈Yi −
1

s

s∑
j=1

Yj, v〉 = 〈Σ1/2Zi −
1

s

s∑
j=1

Σ1/2Zj, v〉 = 〈Zi −
1

s

s∑
j=1

Zj,Σ
1/2v〉,

but ||Σ1/2v|| ≤ ||v|| ≤ 1. Now, for standard Gaussians, denoting

Ti = Yi − 1
s

∑s
j=1 Yj ∼ N(0, (1− o(1))I), we have the expression

1

s
E

s∑
i=1

〈Ti, v〉4. It is enough to

show that E〈Ti, v〉4 = O(1). Note, however, that

E〈Ti, v〉4 =
∑
p,q,r,`

(Ti)p(Ti)q(Ti)r(Ti)`vpvqvrv`.

Since trivially (Ti)p, (Ti)q are independent mean 0 Gaussians whenever p 6= q, the above expression
is equivalent to ∑

p,q

E(Ti)
2
p(Ti)

2
qv

2
pv

2
q ≤

∑
p,q

v2
pv

2
q = ||v||42 ≤ 1,

as desired.

Using standard Gaussian concentration results, we also obtain the respective high-probability bounds.
Intuitively, this works as

1

s
E

s∑
i=1

〈Yi −
1

s

s∑
j=1

Yj, v〉4

is a symmetric function of ds iid Gaussians, so its gradient is relatively small. See more in [4].
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