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1 Introduction
Tensor decomposition has recently become an invaluable algorithmic primitive. It has seen

much use in new algorithms with provable guarantees for fundamental statistics and

machine learning problems. In these settings, some low-rank k-tensor A �
∑r

i�1
a⊗k

i which

wewould like to decompose into components a1, . . . , ar ∈ �
n
is often not directly accessible.

This could happen for many reasons; a common one is that A � �X⊗k
for some random

variable X, and estimating A to high precision may require too many independent samples

from X.

In this lecture we will dig in to algorithms for robust tensor decomposition—that is,

how to accomplish tensor decomposition efficiently in the presence of errors.

Wewill focus on orthogonal tensor decompositionwhere components a1, . . . , ar ∈ �
n
of the

tensor A �
∑r

i�1
a⊗k

i to be decomposed are orthogonal unit vectors. Tensor decomposition

is already both algorithmically nontrivial and quite useful in this setting—the orthogonal

setting is good enough to give the best known algorithms for Gaussianmixtures, some kinds

of dictionary learning, and the stochastic blockmodel. As we saw before, viawhitening if the
covariance matrix

∑n
i�1

ai a>i is known for non-orthogonl but linearly independent vectors

a1, . . . , an then decomposing the tensor

∑n
i�1

a⊗3

i reduces to orthogonal decomposition.

2 Jenrich’s algorithm for orthogonal tensor decomposition
The algorithm.

Input: A �
∑r

i�1
a⊗3

i for orthogonal unit vectors a1, . . . , ar ∈ �
n

Algorithm: sample 1 ∼ N(0, I) and compute the contraction M �∑r
i�1

〈1 , ai〉aia>i . Output the top eigenvector of M.

Analysis: clearly the top eigenvector is ai for i � argmax〈ai , 1〉. By symmetry,

each vector ai is equally likely to be the output of the algorithm, so running the

algorithm n log n times recovers all the vectors.
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2.1 Robustness to 1/poly(n) errors
Jenrich’s algorithm is already robust to a small amount of error in the input.

Input: B � A + C, where A is as above and every entry of C has magnitude at

most n−10
.

Algorithm: same as above.

Analysis: Now the matrix M takes the form

M �

r∑
i�1

〈ai , 1〉ai a>i + C′

It is elementary to show that for every ai ,

�{〈ai , 1〉 > 200 max

j,i
|〈ai , 1〉|, 200‖C′‖op} > n−O(1) .

Suppose this occurs for a1. Then there is a number c such that M � ca1a>
1
+ M′,

where ‖M′‖ 6 c/10. Thus, the top eigenvalue of M is at least 99c/100, and so

〈ai , v〉2 > 0.9 where v is the top eigenvector of M.

It follows that for every i, with probability n−O(1)
, the algorithm outputs b such

that 〈ai , b〉2 > 0.9.

To turn this in to an algorithm to recover a1, . . . , ar to accuracy 0.9 we need a

way to check that this n−O(1)
-probability event has occurred. This can be done

by checking that the value 〈B, v⊗3〉 > 0.7; we leave the details to the reader.

Exercise: Describe and analyze an algorithm for orthogonal tensor decomposi-

tion in the above setting, which first uses Jenrich’s algorithm to find candidate

vectors v1, . . . , vm for some m � nO(1)
, then uses the values 〈B, v⊗3

i 〉 to determine

which vi’s are close to some ai .

2.2 Larger errors and tensor norms
As before, our setting is orthonormal vectors a1, . . . , an with a tensor B �

∑n
i�1

a⊗3

i + C
for some error tensor C. Sample-efficient statistical estimation algorithms require tensor

decomposition algorithms which tolerate nastier errors than C which has entries �

1/poly(n). But the question of how to measure such errors is subtle. We will need to make

a detour to discuss a variety of tensor norms in which to measure errors.

`2-norm

The simplest norm we could consider treats a k-tensor as an nk
-length vector and measures

its Euclidean norm. That is, if T is a 3-tensor,

‖T‖2 �
*.
,

∑
i , j,k∈[n]

T2

i jk
+/
-

1/2

.
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injective tensor norm

A rather different norm is the injective tensor norm, which is a natural tensor generalization

of the spectral norm of a matrix. If T is a k-tensor,

‖T‖in j � max

‖x‖2�1

���〈T, x⊗k〉��� .

In words, the injective tensor norm treats T as the coefficients of a homogeneous degree-k
polynomial and maximizes that polynomial over the unit sphere.

Exercise: Prove that for every tensor T,

‖T‖2 > ‖T‖in j .

Unlike the `2-norm or the matrix spectral norm, the injective tensor norm is NP-hard

to compute exactly, and there is evidence (in the form no-go results for SoS algorithms)

suggesting NP-hard to approximate within no(1)
factors.

SoS norms

SoS norms are a family of efficiently computable relaxations of the tensor injective norm.

The d-th SoS norm of a 3-tensor T is

‖T‖SoSd � max

˜� is degree d
satisfies {‖x‖2�1}

˜�〈T, x⊗3〉2 .

(This is well defined so long as d is even and d > 6.) The d-th SoS norm can be computed

in nO(d)
time by solving the SoS semidefinite program. The definition generalizes naturally

to k-tensors.
By the usual duality, ‖T‖SoSd is also the best upper bound certifiable on the maximum of

the polynomial 〈x⊗k , T〉 over the unit sphere by degree-d SoS proofs. That is, if c � ‖T‖sosd

is the least c such that there is an SoS proof

c − 〈T, x⊗k〉 + q(x)(‖x‖2

− 1) � 0

for some q of degree 6 d.

comparing norms

Exercise: Show that

‖T‖2 > ‖T‖SoS6
> ‖T‖SoS8

> . . . > ‖T‖SoSn > ‖T‖in j .

Exercise (separation of norms): Suppose T is a 4-tensor whose entries are iid

samples fromN(0, 1). Show that (with high probability) (a) ‖T‖2 ≈ n2
(easy),

(b) ‖T‖in j 6
√

n log(n)O(1)
(use a Chernoff/union bound argument), and (c)
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‖T‖SoS8
6 n log(n)O(1)

. As a bonus exercise, try to show (d) ‖T‖SoS8
> n0.99

(this

might be very difficult!). An easier (still nontrivial) version of this exercise is to

show that with high probability

max

˜� degree 4, satisfies {‖x‖2�1}
˜�〈T, x⊗4〉 > n0.99 .

(The only difference from the SoS8 norm is the omission of the square and that

the maximization is over
˜� of degree 4.)

Exercise: Show that if k is even, the norm ‖T‖op given by unfolding T to a

nk/2
× nk/2

matrix and measuring its spectral norm satisfies ‖T‖op > ‖T‖sosk .

non-algorithmic tensor decomposition under injective norm error

First, let us establish that if we are not concerned about efficient algorithms, tensor

decomposition is possible when errors are bounded in injective norm.

Exercise: Suppose B �
∑n

i�1
a⊗4

i + C where a1, . . . , an are orthonormal

and ‖C‖in j 6 o(1). Show that the maximizers b1, . . . , bn of the polynomial

f (x) � 〈B, x⊗4〉 over the unit sphere {x : ‖x‖ � 1} satisfy 〈bi , ai〉 > 1 − o(1).
This shows that an exhaustive search algorithm (perhaps with some appropriate dis-

cretization of �n
) finds a good decomposition of an orthogonal tensor with injective norm

error.

2.3 Jenrich’s and larger errors
Howdoes Jenrich’s algorithmperformwith errors larger than 1/pol y(n) in each coordinate?

First, we give an example tensor decomposition problem which has errors bounded in

injective norm but for which Jenrich’s algorithm breaks down.

large random errors

As usual, let B �
∑n

i�1
a⊗4

i + C, where a1, . . . , an are orthonormal. Suppose C has iid

entries fromN(0, 1/n1.1). In a previous exercise, you showed that ‖C‖in j 6 o(1) with high

probability. How well does Jenrich’s algorithm do to decompose B? The algorithm will

sample 1 ∼ N(0, In2) and compute

M1 �

n∑
i�1

〈1 , ai ⊗ ai〉ai a>i +

n∑
i , j�1

1i jCi j

where Ci j ∈ �
n×n

is the i j-thmatrix slice of the 4-tensor C. Without getting too rigorous, the

distribution of each entry of the matrix E �
∑n

i , j�1
1i jCi j is roughly Gaussian with variance

n0.9
, and the entries are independent (conditioned on 1). Thus the eigenvalues of E are

roughly n1.45
in magnitude, swamping the contribution of the matrix

∑n
i�1

〈1 , ai ⊗ ai〉ai a>i .
(Making this rigorous would take us on a tour of the beautiful theory of spiked Gaussian

and Wigner matrices, but that would be too far afield for present.)
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3 The high spectral entropy tensor decomposition algo-
rithm

Ma, Shi, and Steurer introduced a method improve the performance of Jenrich’s algorithm

in the presence of larger errors. Their algorithm tolerates errors which are bounded in SoS

norm.

3.1 Aside: decomposing tensors is the same thing as rounding moments
As usual, consider the goal of recovering a1, . . . , ar unit vectors in �n

from a tensor

T �
∑r

i�1
a⊗3

i + C. From now on, instead of applying Jenrich-like algorithms directly to

input tensors, we will think of algorithms which work in two phases:

1. Solve a convex relaxation formed from the input tensor T to find moments of a

(pseudo)distribution which is correlated with the vectors a1, . . . , ar .

2. Round a moment tensor (usually the third or fourth moments) of the

(pseudo)distribution to output vectors b1, . . . , br correlated with a1, . . . , ar .

Let us return to our first example of zero-error orthogonal tensor decomposition with

input A �
∑r

i�1
a⊗3

i . Rescaling, the tensor
1

r A is the third moment tensor of the finitely-

supported distribution µ on the unit sphere which uniformly chooses one of the vectors

a1, . . . , ar . That is, �x∼µ x⊗3 �
1

r A. Applying Jenrich’s algorithm to this tensor (via the

matrix M � �x∼µ〈x , 1〉xx>) was enough to recover the vectors a1, . . . , ar . Here we did not

even have to solve a convex relaxation to obtain a good moment tensor � x⊗3
.

3.2 Orthogonal tensor decomposition with SoS-bounded errors
Theorem 3.1 (Ma-Shi-Steurer (weakened parameters for easier proof)). There is nO(d)-time
time algorithm with the following guarantees. Let a1, . . . , ar ∈ �

n be orthonormal and let
A �
∑r

i�1
a⊗3

i . Let T � A + C where ‖C‖sosd 6 o(1). The algorithm takes input T and outputs a
(randomized) unit vector b ∈ �n such that for every i 6 r,

�{〈ai , b〉 > 1 − o(1)} > n−O(1)

The first ingredient in the proof uses the SoS algorithm to find a pseudodistribution

whose moments are correlated with those of the uniform distribution over a1, . . . , ar .

Claim 3.2. In the setting of the above theorem, if
˜� of degree d solves

argmax ˜� satisfies ‖x‖2�1

˜�〈T, x⊗3〉
then

˜�
∑r

i�1
〈ai , x〉3 > 1 − o(1).
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Proof. Let µ be the uniform distribution on a1, . . . , ar . On the one hand, the maximum

value of this optimization problem is at least

�
x∼µ

r∑
i�1

〈x , ai〉3 + 〈C, x⊗3〉 > 1 − o(1) .

where we have used the sosd-bounedness of C.

On the other hand, any
˜� which achieves objective value δ must satisfy

˜�

r∑
i�1

〈x , ai〉3 > δ − o(1) .

by similar reasoning. All together, the optimizer satisfies
˜�
∑r

i�1
〈x , ai〉3 > 1 − o(1). �

It will be technically convenient also to assume that
˜�’s fourth moments are correlated

with the fourth moments of the uniform distribution on a1, . . . , ar . This is allowed, because

if
˜�
∑r

i�1
〈ai , x〉3 > 1 − o(1), then also

1 − o(1) 6 ˜�

r∑
i�1

〈ai , x〉3 6 *
,

r∑
i�1

〈ai , x〉2+
-

1/2

*
,

r∑
i�1

〈ai , x〉4+
-

1/2

6 *
,

r∑
i�1

〈ai , x〉4+
-

1/2

.

Thus we can assume access to a pseudodistribution with
˜�
∑r

i�1
〈x , ai〉4 > 1 − o(1). We

are hoping that
˜�’s moments look enough like those of µ that we can extract the ai’s from

˜� using Jenrich’s algorithm. Unfortunately, knowing only that
˜�
∑r

i�1
〈x , ai〉4 > 1 − o(1) is

not enough.

Exercise: Construct a distribution ν on the unit sphere satisfying

�x∼nu
∑r

i�1
〈x , ai〉3 > 1 − o(1) but the top eigenvector v of the matrix M from

Jenrich’s algorithm applied to �x∼ν x⊗3
satisfies 〈v , ai〉 6 o(1) with high proba-

bility for every ai . Hint: some spurious eigenvector in the matrix M should come
from ν putting o(1) probability on a vector having nothing to do with a1, . . . , ar .

3.3 High entropy saves the day
The key observation of Ma, Shi, and Steurer is that a distribution (or a pseudodistribution)

on the unit sphere which is correlated with A and has high entropy (in a sense we will

momentarily make precise) is enough like the uniform distribution on a1, . . . , ar that it can

be rounded using Jenrich’s algorithm. This should make sense in light of the preceding

exercise. The counterexample ν (described in the hint) places probability� 1/r on a single

vector—a very low entropy thing to do! If we can force our pseudodistribution not to do

something like this, we can remove spurious vectors appearing in the spectrum of the

matrices in Jenrich’s algorithm.

We will require that our pseudodistribution’s moment matrices do not have large

eigenvalues. Notice that if µ is the uniform distribution over orthonormal vectors a1, . . . , ar ,

then ‖�x∼µ xx>‖ � 1/r.
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Claim 3.3. Let a1, . . . , ar ∈ �
n
be orthonormal. If

˜� is a degree-4 pseudodistribution

satisfying {‖x‖2 � 1} and ‖ ˜� xx>‖op , ‖ ˜�(x ⊗ x)(x ⊗ x)>‖op 6 1/r with
˜�
∑r

i�1
〈ai , x〉4 >

1 − o(1), then for all but a o(1)-fraction of a1, . . . , ar ,

˜�〈ai , x〉4 > (1 − o(1))/r .

Proof. Suppose to the contrary that a δ � Ω(1)-fractionof a1, . . . , ar have ˜�〈ai , x〉4 6 (1−δ)/r.
Then there is some ai with

˜�〈ai , x〉4 > 1/r, by averaging. But for any unit vector a,

˜�〈a , x〉4 6  ˜�(x ⊗ x)(x ⊗ x)>op
6

1

r
.

�

Next we show how to exploit the constraints ‖ ˜� xx>‖, ‖ ˜�(x ⊗ x)(x ⊗ x)>‖ 6 1/r to

round a pseudodistribution
˜� to produce estimates of the vectors a1, . . . , ar .

Lemma 3.4. Let a ∈ �n be a unit vector and let ˜� be a degree-6 pseudodistribution satisfying
{‖x‖2 � 1} and ‖ ˜� xx>‖op , ‖ ˜�(x⊗x)(x⊗x)>‖op , ‖ ˜�(x⊗3)(x⊗3)>‖op 6

1

r . Suppose ˜�〈x , a〉4 >
(1−o(1))/r. Thenwith probability n−O(1), the top eigenvector v of thematrix M1

def

� ˜�〈x⊗x , 1〉xx>

for 1 ∼ N(0, Id) satisfies 〈v , a〉2 > 0.99.

Together with the preceding claim this is enough to prove a (slightly weakened) version

of the theorem.1

Exercise. Show that the distribution you constructed in the previous exercise

violates assumptions on
˜� above.

To prove Lemma 3.4 will require two claims.

Claim 3.5. Let 1 ∼ N(0,Σ) for some Σ � Id. Then

�
1
‖ ˜�〈x ⊗ x , 1〉xx>‖ 6 O(log n)1/2/r .

Proof sketch. We prove the case Σ � Id from which general Σ � Id can be derived. In this

case,

˜�〈x ⊗ x , 1〉xx> �

∑
i6n

1i j ˜� xi x jxx>

where 1i j ∼ N(0, 1) are independent. Let Mi j � ˜� xix j xx>. By standard matrix concentra-

tion bounds, the expected spectral norm of this matrix is at most

O(log n)1/2 ·


∑
i6n

Mi j M>

i j



1/2

.

1It is possible to recover all of the vectors, rather than only a 0.99 fraction of them, by adding constraints

on
˜� and re-solving after each vector is found—see the paper of Ma, Shi, and Steurer for details.
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It is an exercise to show that our assumptions on spectral norms of moments of
˜� imply



∑
i6n

Mi jM>

i j



1/2

6 1/r .

The claim follows. �

Claim 3.6. The matrix
˜�〈x , a〉2xx> can be expressed as

˜�〈x , a〉2xx> �
1

r aa> + E

where ‖E‖op 6 o(1/r).
Proof sketch. To save on notation, without loss of generality suppose that a � e1. Consider

the submatrix M of
˜� x1xx> given by rows and columns 2, . . . , n. This matrix has spectral

norm

We assumed that

˜� x4

1
> (1 − o(1))/r

but at the same time

˜� x2

1

r∑
i�1

x2

i 6
˜� x2

1
6 1/r

by our eigenvalue bounds on ‖ ˜� xx>‖. So,

˜� x2

1

r∑
i�2

x2

i 6 o(1/r) .

Let v ∈ �n
be a unit vector orthogonal to a. Then

˜� x2

1
〈x , v〉2 6 ˜� x2

1
‖Π⊥x‖2 6 o(1/r)

where Π⊥ is the projector to last n − 1 coordinates. Since
˜� x2

1
xx> � 0, this implies that

‖e1e>
1
/r − ˜� x2

1
xx>‖ 6 o(1/r). �

Proof sketch of Lemma 3.4. We sample the vector 1 as 1 � ξ · a + 1′, where 1′ is a unit-

variance multivariate Gaussian in the subspace orthogonal to a ⊗ a, and ξ is a unit-variance

univariate Gaussian. Furthermore, ξ and 1′ are independent. So we can write M1 as

M1 � ξ ˜�〈x , a〉2xx> + ˜�〈x ⊗ x , 1′〉xx> .

ByMarkov’s inequality, our claims above, andGaussian anti-concentration, with probability

n−O(1)
we can write

M1 � ξaa>/r + E

where ‖E‖ 6 0.001ξ/r and ξ > 0. The lemma follows. �
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4 What if the errors are not bounded in SoS norm?
Many tensors do not have errors bounded in SoS norm but should nonetheless be easy

to decompose. For example, consider the tensor T �
∑r

i�1
a⊗3

i + c⊗3
, where as usual the

a1, . . . , ar are orthonormal but c has norm 100. The tensor c⊗3
does not have SoS norm� 1,

but at least intuitively this should not present a real difficulty in decomposing this tensor.

However, the solution to argmax ˜�
˜�〈T, x⊗3〉 will put all its weight on c, so the resulting

˜�

will (probably) not contain any information about a1, . . . , ar .

There are likely many kinds of errors not� 1 in SoS norm but which do not present a

problem for tensor decomposition. Hopkins and Steurer study the setting that the input

tensor is correlated—in the Euclidean sense—with the target orthogonal tensor. Tensor

decomposition in this setting can be used to obtain algorithms for statistical inference

problems with very tight sample complexity guarantees (see the paper for more).

More formally, the goal is to decompose an orthogonal tensor A �
∑r

i�1
a⊗3

i , and the

input is a tensor T such that

〈T,A〉
‖T‖‖A‖ > δ � Ω(1) .

By standard linear algebra, up to scaling we can think of T � A + B where 〈A, B〉 � 0 and

‖B‖ � O(‖A‖). Note that the condition 〈A, B〉 � 0 cannot be dropped: if T � A + B and we

do not require 〈A, B〉 � 0, then setting B � −A would destroy all the information about A
in the input T.

Even assuming 〈A, B〉 � 0, it is possible in this setting that not all the vectors a1, . . . , ar

can be recovered. For example, if B � a⊗3

1
− a⊗3

2
, then 〈A, B〉 � 0 but A + B contains no

information about a2. We will have to set our sights on recovering just some of the vectors.

In light of the lemma on rounding pseudodistributions
˜� having

˜�
∑r

i�1
〈x , ai〉3 > δ, it

would be enough to show how to take input T and produce such a pseudodistribution. For

this we have the following lemma.

Lemma 4.1 (Hopkins-Steurer). Let T satisfy

〈T,A〉
‖T‖‖A‖ > δ � Ω(1) .

The solution to the following convex program

min

˜� degree 4
‖ ˜� x⊗3‖ such that (4.1)

˜� satisfies {‖x‖2

� 1} (4.2)

˜�〈x⊗3, T〉 > δ · ‖T‖
√

r
(4.3)

‖ ˜� xx>‖op 6
1

r (4.4)

‖ ˜�(x ⊗ x)(x ⊗ x)>‖op 6
1

r . (4.5)

satisfies ˜�
∑r

i�1
〈ai , x〉3 > poly(δ).

9



Before we prove the lemma—how should we interpret this convex program? The

objective function may be unfamiliar, but we can obtain some good intuition if we think

about what ‖�x∼µ x⊗3‖ means for µ a distribution supported on orthonormal vectors

a1, . . . , ar (but not necessarily the uniform distribution on those vectors). In this case,

‖ �
x∼µ

x⊗3‖2

� 〈
r∑

i�1

µ(i)a⊗3

i ,
r∑

i�1

µ(i)a⊗3

i 〉 �
r∑

i�1

µ(i)2 � collision-probability(µ) .

The collision probability is an `2 version of entropy—as µ becomes closer to uniform, the

collision probability decreases. It is also closely related to the Rényi entropy.

It is a good exercise to convince yourself that in the motivating example from before—

T �
∑r

i�1
a⊗3

i + c⊗3
where ‖c‖ � 100—the distribution µ of minimal collision probability

which obtains 〈�x∼µ x⊗3, T〉 > δ also has �x∼µ
∑r

i�1
〈x , ai〉3 > poly(δ), for small enough

constants δ > 0.

The lemma follows from the following general fact

Theorem 4.2 (Appears in this form in Hopkins-Steurer). Let C be a convex set and Y ∈ C.
Let P be a vector with 〈P,Y〉 > δ · ‖P‖ · ‖Y‖. Then, if we let Q be the vector that minimizes ‖Q‖
subject to Q ∈ C and 〈P,Q〉 > δ · ‖P‖ · ‖Y‖, we have

〈Q ,Y〉 > δ/2 · ‖Q‖ · ‖Y‖ . (4.6)

Furthermore, Q satisfies ‖Q‖ > δ‖Y‖.

Proof. By construction, Q is the Euclidean projection of 0 into the set C
′

:� {Q ∈ C |
〈P,Q〉 > δ‖P‖ · ‖Y‖}. It’s a basic geometric fact (sometimes called Pythagorean inequality)

that a Euclidean projection into a set decreases distances to points into the set. Therefore,

‖Y − Q‖2 6 ‖Y − 0‖
2
(using that Y ∈ C′). Thus, 〈Y,Q〉 > ‖Q‖2/2. On the other

hand, 〈P,Q〉 > δ‖P‖ · ‖Y‖ means that ‖Q‖ > δ‖Y‖ by Cauchy–Schwarz. We conclude

〈Y,Q〉 > δ/2 · ‖Y‖ · ‖Q‖. �

Now we can prove the lemma.

Proof of lemma. Consider the convex set

C � { ˜� degree-4 satisfying ‖x‖2

� 1, ‖ ˜� xx>‖op 6
1

r , ‖ ˜�(x ⊗ x)(x ⊗ x)>‖op 6
1

r } .
The uniform distribution µ over a1, . . . , ar is in C, and T satisfies

〈T, �
x∼µ

x⊗3〉 > δ · ‖T‖ · ‖ �
x∼µ

x⊗3‖ .

Let
˜� be the solution to the convex program in the lemma. According to the the theorem

on correlation-preserving projections,

〈 ˜� x⊗3, �
x∼µ

x⊗3〉 > δ/2 · ‖ ˜� x⊗3‖ · ‖ �
x∼µ

x⊗3‖ > δ2/2 · ‖ �
x∼µ

x⊗3‖2

� δ2/(2r) .
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where in the last step we have used that the collision probability of µ is 1/r. Rearranging,

〈 ˜� x⊗3, �
x∼µ

x⊗3〉 � 1

r
· ˜�

r∑
i�1

〈ai , x〉3

which proves the lemma. �

To turn the above into an algorithm requires a version of Lemma 3.4 suitable for this

low-correlation regime, stated below. The proof uses mostly the same ideas as that of

Lemma 3.4.

Lemma 4.3 (Hopkins-Steurer). For every 0 < δ < 1 there is a polynomial time algorithm with
the following guarantees. Suppose ˜� is a degree-4 pseudoexpectation in the variables x1, . . . , xn

satisfying {‖x‖2 � 1}. Furthermore, suppose that

1. ˜�
∑r

i�1
〈x , ai〉3 > δ.

2. ‖ ˜� xx>‖op 6
1

r (this is a convex constraint!).

3. ‖ ˜�(x ⊗ x)(x ⊗ x)>‖ 6 1

r (this is also a convex constraint!).

Then for at least r′ � poly(δ)r vectors a1, . . . , ar′, the algorithm takes input ˜� and produces a unit
vector b such that

�{〈ai , b〉 > poly(δ)} > n−poly(1/δ) .
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