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PLANTED CLIQUE ("DISTINGUISHING")

[J '92, K '95]

Input: graph 

Goal: determine (with high probability) whether

 ("random distribution"), or

 ("planted distribution").

FOR WHAT  IS THIS POSSIBLE IN POLYNOMIAL TIME?

G

G ∼ G (n, )1
2

G ∼ G (n, ) + k-clique1
2

k



[J '92, K '95]

BASICS
: information-theoretically-impossiblek = O(1)

BRUTE FORCE
 max clique in  [GM '75, M '76, BE '78]k > G (n, ) ≈ 2 logn1

2

requires  time ("quasipolynomial")nO(log n)

SPECTRAL (ADJACENCY MATRIX)
, polynomial time [AKS '98]k > n√



HYPOTHESIS: NO POLYNOMIAL-TIME
ALGORITHM FOR k = n0.49

"SPECTRAL IS BEST"



IF SPECTRAL IS BEST, HARDNESS RESULTS GALORE!

Sparse PCA [BR '13]

Compressed Sensing [KZ '14]

Property Testing [AAK+ '07]

Mathematical Finance [DBL '10]

Cryptography [JP '00, ABW '10]

Computational Biology [PS000, MSOI+ '02, JM '15]

Best Nash Equilibrium [HK '11, ABC '13]

(and )P ≠ NP

Problems which have:

a distribution on inputs

-time algorithmsnO(log n)

TO BEAT SPECTRAL SEEMS TO REQUIRE NEW ALGORITHMIC IDEAS



WHY BELIEVE SPECTRAL IS BEST?

bad scienceno algorithmic progress in 20 years?

distribution on inputsreductions? (3SAT  planted clique)≤

Rule out large classes of algorithms

Markov-Chain Monte Carlo [Jerrum '93]

Lovasz-Schrijver+ Convex Hierarchy [Feige-Krauthgamer '04]

Statistical Algorithms [Feldman et al '12]

All do not beat spectral



WHY BELIEVE SPECTRAL COULD BE BEATEN?



THE SUM-OF-SQUARES
(META-) ALGORITHM



Generalization of linear programming, basic semide�nite
programming, spectral algorithms

Optimal among all (poly-sized) SDPs for constraint
satisfaction [LRS '15]

Solves all known hard instances of unique games, max cut in
polynomial time [BBHKSZ '12, OZ '13, DMN '12]

Best known algorithm for many planted problems, beating
corresponding spectral algorithms!  
(dictionary learning, planted CSPs, tensor PCA, tensor
decomposition, …) [BKS '15ab, AOW '15, RRS '16, HSS '15, HSSS '16, GM '15,

MSS '16, …]



QUESTION: DOES SPECTRAL-IS-BEST WITHSTAND THE SUM-OF-
SQUARES ALGORITHM?



Theorem (informal): The Sum-of-Squares hierarchy requires 
 time to distinguish planted from random when 

. 
nΩ(log n)

k = n0.49

Spectral-is-best withstands the Sum-of-Squares algorithm.



WHAT IS THE SUM-OF-SQUARES ALGORITHM?

nasty optimization problem



WHAT IS THE SUM-OF-SQUARES ALGORITHM?
|S|max

S a clique in G



WHAT IS THE SUM-OF-SQUARES ALGORITHM?
A hierarchy of increasing-strength semide�nite programming
(SDP) relaxations of an underlying (nonconvex) problem.

Generalizing linear programming, basic SDP, spectral
methods.



WHAT IS THE SUM-OF-SQUARES ALGORITHM?

small SDP, weak relaxation

huge, exact SDP

{"degree d"
add variables,
constriants

 

Regime of interest: .

d = n : ⪰ 0( )
  

×2n 2n

⋯
d = 2 : ⪰ 0( )

  

×n
2

n
2

d = 1 : ⪰ 0( )
 
n×n

d < o(logn)



Convex Relaxations for Planted Clique

If , output PLANTED else

RANDOM.

SIZE(X) ≥maxX∈So (G)Sd
n0.49



Question: How big is  in the

random case? 
(If , we can beat the spectral algorithm!)

SIZE(X)maxX∈So (G)Sd

≪ n√





Goal:  so thatX = X(G) ∈ So (G)Sd

≥ SIZE(X(G)) ≥n√ EG∼G(n,1/2) n
0.49



Goal:  so thatX = X(G) ∈ So (G)Sd

SIZE(X(G)) ≥EG∼G(n,1/2) n
0.49

Prior work [FK '04, folklore]: 
 feasible for LP, basic SDP, spectral, Sherali-Adams,

Lovasz-Schrijver+ with  w.h.p.

Related [MPW '15, DM '15, HKPRS '16]: 

Same  cannot work for tight SoS bound [Kelner]

X(G)
SIZE(X(G)) ≥ n0.49

X(G) ∈ So (G)Sd

SIZE(X(G)) ≥ ≈EG∼G(n,1/2) n
1/poly(d)

n
0.001

X(G)



Original Goal:  so that

Dif�cult to construct  (☹ ☹ high-
dimensional positive-semide�nite matrices)

New (harder) Goal (pseudocalibration) : Construct 
 which shares more properties of a

planted clique than just .

X = X(G) ∈ So (G)Sd

SIZE(X(G)) ≥EG∼G(n,1/2) n0.49

X(G) ∈ So (G)Sd

X = X(G) ∈ So (G)Sd

SIZE(X(G)) ≥ n0.49



New (harder) Goal (pseudocalibration) : 
 so that

for some family  of -dependent linear
functions ("tests"), including .

Example:  number of -cliques containing a

typical clique vertex.

X = X(G) ∈ So (G)Sd

(X(G)) = ( )EG∼G(n,1/2)TG EplantedTG 1clique

{ : → R}TG R
n

G

SIZE

( ) =TG 1clique 4



Lemma: If  linear functions whose coef�cients are
low-degree polynomials in entries of  and 
satis�es

1. 

2.  is "small"

then with high probability  for 
 and .

{ } =TG

AG X(G)

(X(G)) = ( )EG∼G(n,1/2)TG EplantedTG 1clique

∥X(G)EG∼G(n,1/2) ∥2
2

X(G) ∈ So (G)Sd

d = o(logn) SIZE(X(G)) ≥ n0.49

Lemma:  satisfying these conditions exists.X(G)

 thinks there is an -size clique in 
.

So (G)Sd n0.49

G ∼ G (n, )1



.G ∼ G (n, )1
2



WRAPPING UP
(Nearly) resolved "SoS versus planted clique" using new
pseudocalibration approach.

Future work/open problems: Pseudocalibration suggests SoS
lower bound construction for other planted problems.



THANKS! QUESTIONS?


