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PLANTED CLIQUE ("DISTINGUISHING")

Input: graph G
Goal: determine (with high probability) whether

G~G (n, %) ("random distribution"), or
G~G (n, %) + k-clique ("planted distribution").
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FOR WHAT £ 1S THIS POSSIBLE IN POLYNOMIAL TIME?
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BASICS

k = O(1): information-theoretically-impossible

BRUTE FORCE

1

k > maxcliquein G (n, 5) ~ 2 log n [GM'75,M'76,BE 78]

O(log n)

requires n time ("quasipolynomial”)

SPECTRAL (ADJACENCY MATRIX)

k > \/n, polynomial time [Aks '9g]



HYPOTHESIS: NO POLYNOMIAL-TIME

ALGORITHM FOR &2 = 7,049
"SPECTRAL IS BEST"



IF SPECTRAL IS BEST, HARDNESS RESULTS GALORE!

Sparse PCA [BR'13]
Compressed Sensing [Kz '14]

Property Testing [AAK+'07] Problems which have:

Mathematical Finance [pBL '10] a distribution on inputs

Cryptography [JP'00, ABW '10] nO(log n)

Computational Biology [psooo, msoid __

-time algorithms

Best Nash Equilibrium [Hk 11, ABC '13]

(and P # N P)
T0 BEAT SPECTRAL SEEMS TO REQUIRE NEW ALGORITHMIC IDEAS



WHY BELIEVE SPECTRAL IS BEST?

no algorithmic progress in 20 years? bad science
reductions? (3SAT < planted clique)  distribution on inputs

Rule out large classes of algorithms

Markov-Chain Monte Carlo [Jerrum'93]
Lovasz-Schrijver+ Convex Hierarchy [Feige-Krauthgamer '04]
Statistical Algorithms [Feldman et al'12]

All do not beat spectral



WHY BELIEVE SPECTRAL COULD BE BEATEN?
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Generalization of linear programming, basic semidefinite
programming, spectral algorithms

Optimal among all (poly-sized) SDPs for constraint
satisfaction [LRS '15]

Solves all known hard instances of unique games, max cut in
polynomial time [BBHKSZ '12,0Z'13, DMN '12]

Best known algorithm for many planted problems, beating
corresponding spectral algorithms!

(dictionary learning, planted CSPs, tensor PCA, tensor
decomposition, ...) [BKS '15ab, AOW '15, RRS'16, HSS '15, HSSS '16, GM '15,
MSS '16, ...]



QUESTION: DOES SPECTRAL-IS-BEST WITHSTAND THE SUM-OF-
SQUARES ALGORITHM?



Theorem (informal): The Sum-of-Squares hierarchy requires

nfogn) time to distinguish planted from random when
Lk — n0.49.

Spectral-is-best withstands the Sum-of-Squares algorithm.



WHAT IS THE SUM-OF-SQUARES ALGORITHM?
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nasty optimization problem



WHAT IS THE SUM-OF-SQUARES ALGORITHM?

max |S]
S a clique in G



WHAT IS THE SUM-OF-SQUARES ALGORITHM?

A hierarchy of increasing-strength semidefinite programming
(SDP) relaxations of an underlying (honconvex) problem.

Generalizing linear programming, basic SDP, spectral
methods.



WHAT IS THE SUM-OF-SQUARES ALGORITHM?

d=n : ( ) =~ 0 huge, exact SDP

o "degree d"
2" %2 .
add variables,

constriants
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d=2: ( )EO

n
d — 1 - ( ) O small SDP, weak relaxation
"~~~

nxn

Regime of interest: d < o(logn).



Convex Relaxations for Planted Clique

Iif max xeg,s,q) SIZE(X) > nY4? output PLANTED else
RANDOM.



Question: How bigis max x¢g,5,(q) SIZE(X) inthe

random case?
(If < 4/, we can beat the spectral algorithm!)
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Goal: X = X(G) € S0S4(G) sothat
\/ﬁ > ‘EGNG(n,l/Q) SIZE(X(G)) > n0'49




Goal: X = X(G) € S0S4(G) sothat
oG/ ZE(X(G)) > n”®

Prior work [FK'04, folklore]:
X (G) feasible for LP, basic SDP, spectral, Sherali-Adams,

Lovasz-Schrijver+ with SIZE(X(G)) > n®* w.h.p.

Related [MPW '15, DM '15,HKPRS '16]:
X(G) € S0S4(G)
LenGn,1/2)9 I ZE(X(G)) > nl/poly(d) ~, ,,0.001

Same X () cannot work for tight SoS bound [kelner]




STZEX) .

Original Goal: X = X(G) € S0S4(G) so that
43G~G(n,1/2) SIZE(X(G)) > n0-49

Difficult to construct X(G) € S0S4(G) (® ® high-

dimensional positive-semidefinite matrices)

New (harder) Goal (pseudocalibration) : Construct
X = X(G) € SoS4(G) which shares more properties of a

planted clique thanjust SIZE(X(G)) > n®%.



New (harder) Goal (pseudocalibration)

X = X(G) € S0S4(G) sothat

tG’N(Gr('n,,l/Z) I ¥e! (X(G)) = IEplanted ke (1clique)
for some family {Tz : R™ — R} of G-dependent linear
functions ("tests"), including SIZ E.

Example: TG (1clique ) = number of 4-cliques containing a
typical clique vertex.



Lemma: If {T(s} = linear functions whose coefficients are
low-degree polynomials in entries of Ag and X (G)
satisfies

1L Eg gm,1/2)Lc(X(G)) = Eplanted T (Leique)
2.Egg(n1/2) || X(G)][3 is "small"

then with high probability X (G) € So0S4(G) for
d = o(logn)and SIZE(X(G)) > n%.

| Lemma: X (G) satisfying these conditions exists.

| S0S4(@G) thinks there is an n’4?-size clique in

~ o~ (1)
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WRAPPING UP

(Nearly) resolved "SoS versus planted clique" using new
pseudocalibration approach.

Future work/open problems: Pseudocalibration suggests SoS
lower bound construction for other planted problems.



THANKS! QUESTIONS?



