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Introduction

The last decade has seen enormous improvements in the practice, prevalence, and usefulness

of machine learning. Deep nets give our phones ears; matrix completion gives our televisions

good taste. Data-driven arti�cial intelligence has become capable of the di�cult—driving a car on

a highway—and the nearly impossible—distinguishing cat pictures without human intervention

[18].

This is the stu� of science �ction. But we are far behind in explaining why many algorithms—

even now-commonplace ones for relatively elementary tasks—work so stunningly well as they do

in the wild. In general, we can prove very little about the performance of these algorithms; in

many cases provable performance guarantees for them appear to be beyond attack by our best

proof techniques. This means that our current-best explanations for how such algorithms can be

so successful resort eventually to (intelligent) guesswork and heuristic analysis. This is not only a

problem for our intellectual honesty. As machine learning shows up in more and more mission-

critical applications it is essential that we understand the guarantees and limits of our approaches

with the certainty a�orded only by rigorous mathematical analysis.

The theory-of-computing community is only beginning to equip itself with the tools to make

rigorous attacks on learning problems. The sophisticated learning pipelines used in practice are

built layer-by-layer from simpler fundamental statistical inference algorithms. We can address

these statistical inference problems rigorously, but only by �rst landing on tractable problem de�-

nitions. In their traditional theory-of-computing formulations, many of these inference problems

have intractable worst-case instances. This demands that we carve up old input spaces in new

ways. We make distributional and deterministic assumptions on our input data to bypass brit-

tle combinatorial hardness constructions. This is not just a matter of convenience: rede�ning our

problems sheds light on the nature of the real-world data for which we know empirically that

statistical inference is tractable.

There is just as much to be done once we �nd mathematical problems which more closely

align with tractable real-world instances. We need new algorithms which exploit the structure

of tractable learning problems in a way amenable to rigorous analysis. In turn, we must use these

algorithms and analyses to explain algorithmic behavior in the wild and even to shape the direc-

tion of future practical algorithmic machine learning research.

I seek to understand the algorithmic mathematics underlying fundamental machine learning

problems.

— Which properties of random inputs make hard optimization problems become feasible?
— Which problems remain unsolved for lack of su�cient algorithmic technology, and

which really lie beyond the limits of e�cient average-case computation?
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My twofold response to these questions is: (1) to develop algorithms with provable run-time and

statistical accuracy guarantees and (2) to prove lower bounds for average-case versions of these

problems against our most powerful convex-relaxation-based algorithms.

Current Research

My work focuses on applications of the Sum of Squares (SoS) meta-algorithm to fundamental

learning problems. The SoS approach is the most powerful of a family of convex-relaxation tech-

niques originating in combinatorial optimization [17, 20, 19, 22]. It captures our best algorithms

for an extraordinary array of hard classical optimization problems. Under the notorious unique

games conjecture (and P , NP), a relatively weak version of SoS (in the spirit of the maximum-cut

algorithm of Goemans and Williamson [8]) yields the best possible polynomial-time algorithm

for any constraint satisfaction problem [15, 21]. It also underlies the best-known approximation

algorithms for the sparsest cut and unique games problems [4, 5]. We therefore see the success or

failure of the SoS approach for any problem as a litmus test for that problem’s polynomial-time

tractability, period.

Planted Cliques in RandomGraphs. How di�cult is it to �nd a large clique in a random graph?

This question dates at least back to Karp in the 1970s [14]. In the modern formulation, due to

Jerrum [13] and Kucera [16], a clique of size ω is added to (planted in) the Erdös-Renyi random

graph G(n , 1/2), and the algorithmic task is to �nd it. This is one of the most basic average-case

problems, and it connects closely to more typical machine learning average case problems, such

as Sparse Principal Component Analysis [6].

As soon as ω is large enough that the problem is well-de�ned—the ω-size clique will be the

largest in the graph—there is an algorithm running in time nO(log n)
. This is much less than the

(believed) best possible for NP-complete problems, for which it is believed that no algorithms

much faster than exponential-time should exist. For this reason, under the conjecture that this

quasi-polynomial running time is the best possible, planted clique also gives a starting point to

study other problemswith complexity in between polynomial and exponential. For example, there

are connections to the complexity �nding approximate Nash equilibria [9], to �nding the densest

subgraphs in worst-case graphs [2], and free games in hardness of approximation [1].

The best known polynomial-time algorithm for planted clique works only when ω is an expo-

nential factor larger. It is a simple spectral one, using the top eigenvector of the adjacency matrix

[3]. Variants of this algorithm are used for a wide range of average-case recovery problems. If

there turns out to be no polynomial-time algorithm which does better even in the restricted set-

ting of planted clique, this would be strong evidence that for the wide class of problems related

to planted clique, spectral algorithms are optimal among polynomial-time algorithms.

In the worst-case world there is a recipe to show that an algorithm is the best possible in

polynomial-time: via a reduction, show that to do better would also involve solving NP-complete

problems e�ciently. But reductions among average-case problems tend to result in un-natural

input distributions (which miss the point of the average case entirely), so their usefulness here

is inherently limited. At present our best substitutes are concrete lower bounds for particular

classes of algorithms. Since SoS captures nearly all of our best polynomial-time approximation

algorithms, the frontier in hardness of planted clique is to show that no polynomial-time SoS al-

gorithm improves on the performance of the simple spectral one.

My collaborators and I have improved the best-known impossibility results to show that amod-

erately strong version of SoS (the degree-four algorithm) does not substantially improve on the spec-

tral algorithm [10]. We anticipate improving this result to show that no polynomial-time algorithm

using the SoS approach can substantially beat the spectral algorithm. Previous results along these
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lines only rule out algorithms (weaker than the SoS approach) which can draw upon only very

local properties in the input graph [7]. By contrast, our work is on understanding optimality cer-

ti�cates for the SoS approach, which can and does exploit nontrivial global statistical information

about the graph.

It remains tantalizingly open (and a problem I will continue to attack) whether the simple spec-

tral algorithm can be beaten using the SoS approach in just slightly super-polynomial running

time.

Speeding up SoS Algorithms. Can the nominally-impractical SoS approach (in full generality it

requires solving a large semide�nite program) yield practical algorithms for average case prob-

lems? My collaborators and I have demonstrated that for a number of machine learning problems

where the SoS approach provides best-known provable guarantees, the proof that SoS approach

succeeds can itself be exploited to give a fast spectral algorithm with similar guarantees (we have

even run these algorithms on sizable instances) [11, 12].

We give a general recipe to turn a proof that the SoS approach works for a particular prob-

lem into into a fast spectral algorithm, so long as an approximate version of that proof can be

constructed quickly from the input. Traditional spectral algorithms focus on a single matrix as-

sociated to the input—the adjacency matrix of a graph, for example. By contrast, SoS associates

a large space of matrices to the data, and in full generality can �nd the best matrix in that space.

The spectral algorithms we get from speeding up SoS still exploit this larger space of available

matrices, so they can (provably) out-perform traditional spectral methods. (This is in contrast to

the planted clique problem from above; here we start with problems where polynomial-time SoS

algorithms do improve on simple spectral methods.)

This technique gives the fastest known (and sometimes the only known polynomial-time) al-

gorithms with such strong guarantees to recover a sparse vector from a random subspace (the

planted sparse vector problem), to de-noise a low-rank tensor (the tensor principal component analy-
sis problem), and to �nd the components of a high-rank random 3-tensor (the overcomplete tensor
decomposition problem) [11].

Important questions remain. Aside from quantitative improvements to our algorithms (on

whichwe already havework in progress), and applications of the recipe to other machine learning

problems, we still lack a general theory of what constitutes a good enough e�ciently-constructible

approximation to the SoS optimality certi�cate, and exactly when such certi�cates can be com-

pressed enough to speed up the spectral algorithms. Such a theory would almost certainly shed

new light on the boundary between polynomial-time and not for important machine learning

problems (for example, dictionary learning and learning mixture models).

Future Directions

Uni�ed and ProvableMachine Learning. The SoS approach o�ers an opportunity to understand

many hard machine learning problems and sophisticated algorithms in a common framework.

Such uni�cation is crucial to complete the picture for theoretical machine learning. It will reveal

shared structure underlying many solvable problems (giving new provable algorithms along the

way), and highlight which di�erences are fundamental rather than symptoms of an incomplete al-

gorithmic picture. I will continue to investigate new SoS algorithms which push forward the state

of the art for provable performance guarantees, and I will explore how preexisting algorithms—

with and without provable guarantees—relate to SoS-based algorithms.

Connections to central Theory Problems. The new algorithms and proof strategies we devise for

machine learning problems will shed new light on problems traditionally central to theoretical
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computer science. The SoS approach holds promise to resolve long-standing open problems in

worst-case algorithms—in particular, the unique games conjecture—and there is hope that insights

from studying its average-case behavior will be helpful along the way. I will investigate how to

apply progress in understanding SoS from the machine learning point of view to worst-case al-

gorithms, with the eventual goal of improved algorithms for worst-case sparse vector recovery

problems, graph cut and expansion problems, and progress on the unique games conjecture.
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