
Lower Bounds 2: Planted Clique

Lecture: Sam Hopkins
Scribe: Angelos Assos

November 2022

1 Introduction

As discussed in the previous lectures, it is important to know the capabilities,
as well as the limitations of our powerful tool, the Sum of Squares Algorithm.
Especially in problems that one believes that Sum Of Squares is the best Poly-
time algorithm that can capture the complexity of this problem, lower bounds
can hint us as to what can be done by Poly-Time algorithms in these particular
problems.

2 Planted Clique Problem

The problem we are going to view through the lens of Sum of Squares is the
Planted Clique problem. Let us start by defining it:

Definition 2.1 (Planted Clique Problem). Consider the following two graph
distributions:

1. G(n, 1
2) - the Random distribution,

2. G(n, 1
2) together with a ’planted’ k−clique - the planted distribution,

Given a graph G has been sampled from one of the above two graph distribu-
tions, determine from which one it was sampled.

Notice that, for the Planted Clique problem, we get a sample from one of
two distributions and the goal is to determine where the sample came from.
Essentially, proving no-go results for the planted clique, will imply average case
hardness for the problem; that is, given a probability distribution over possible
inputs there is no polynomial time algorithm that solves the problem, given a
sample from that distribution.
One good indicator that can indicate to us where the graph was sampled from
is the maximum clique of the graph. We expect that if a graph G sampled from
the Random Distribution, or otherwise if it is sampled from G(n, 1

2), then we
expect the size of the maximum clique to be 2 log n. Therefore, when we have
that k > 2.001 log n, we should be able to Brute Force and determine whether

1

there exists a clique of size at least 2.001 log n - then we are confident that the
graph was sampled from the planted distribution, in nO(logn) time.
Let us now shift our focus to 2 sub-problems:

Search: Given a Graph from the planted distribution, find a k-clique
Refutation: Given an arbitrary G, output CERTIFY if you can guarantee there
does not exist a k-clique, otherwise output ′??′. It should hold that:

PrG∼G(n, 12)
(output CERTIFY) ≥ 1− o(1)

Note that having both the Search and the Refutation can guarantee us the
distinguishability that the Planted Clique Problem requires.
So after all, when should Planted Clique be easy? The typical degrees in a
Random graph G should be n

2 ±O(
√
n). When adding a planted clique of size

k, we increase that to n
2 ± O(

√
n) + k, thus when k ≫

√
n log n, one can just

look at the maximum degree of the graph, which is going to be a good indicator
for the max clique, and infer from which distribution the graph was sampled.
Earlier, we mentioned that we can Brute Force checking for a 2.001 log n size
clique. This can be done in nO(logn), and SOS can also match that: for a clique
of size k = n

2d
we can have an nO(d) degree Sum of Squares that verifies if there

exists a k clique.
In the next sections we are going to see that using SoS, does not help us infer
anything about the maximum clique of a random graph. More specifically, in
the case of the random graph it only tells us that the max clique has to be less
than O(

√
n) - as depicted by theorem 1.

3 SOS algorithm for Planted Clique refutation

Given G and x1, x2, ..., xn ∈ {0, 1} we write the following constraints for a clique
of size k:

Ck =


x2
i = xi

xixj = 0, i ̸∼ j in G∑
i xi = k

We are going to check if there is a degree d refutation of Ck, in time nO(d).
How can we refute this? Note that it was an exercise in Problem set 1 to prove
that for k ≫

√
n, we have a refutation. Our hope, is to prove there is no SoS

refutation of degree d = O(1)

Theorem 1. With high probability, if G ∼ G(n, 1
2), then we have a degree d

pseudo expectation Ẽ such that:

Ẽ |= Cn0.5−ϵ

where d = Ω(ϵ2 logn
log logn)

2

For the rest of the lecture we are going to go through the full proof of why
there is no SoS refutation for d = 2, sketch the proof of d = 4 case, and talk
briefly about what happens when d ≫ 4

3.1 Degree d = 2 refutation - full proof

Let’s reiterate what we want: We want with high probability to exist a pseudo-
expectation Ẽ for which:

Ẽ |= x2
i = xi, xixj = 0 ∀i ̸∼ j and Ẽ

∑
xi = Ω(

√
n)

The proof is going to be similar to the proof for the Max-Cut lower bound
from Lecture 7. We will need the to construct the pseudo-expectation, which is
essentially just a map from a graph G to Ẽxi and Ẽxixj .
Let’s start by seeing what is forced upon us. We need to have

Ẽxixj = 0, i ̸∼ j

Let us set Ẽxi =
k
n ,∀i ∈ [n] and Ẽxixj = λ, which holds for edges in the graph,

i.e. for i ∼ j. We also have due to Cauchy Schwartz:

Ẽ(
∑
i

xi)
2 ≥ (Ẽ

∑
xi)

2 =⇒
∑
i,j

Ẽxixj ≥ k2 =⇒ λ ≥ k2

|E|
≈ k2

n2

In order to find such a pseudo expectation, we need the matrix M =
(1, x)(1, x)T to be PSD:

Ẽ ≥ 0 ⇐⇒ Ẽ(1, x)(1, x)T ≥ 0

Now, let us now try to construct the matrix of the pseudo-distribution:

M2 =

(
1 x⃗

x⃗ A

)
Note that the for the matrix A we have:

A = (
k

n
− λ)I + λAG

where AG is the adjacency matrix with 1’s in the diagonals. Thus what’s left
to prove is that the following matrix is PSD:(

1 k
n 1⃗

k
n 1⃗ (kn − λ)I + λAG

)
We focus on the lower right block of the matrix:

(
k

n
− λ)I + λAG = (

k

n
− λ)I + λ(

J

2
+ ĀG)

3

where J is the all 1’s matrix, and ĀG satisfies ĀG = AG − 1
2J , i.e. it is AG

centered around 0. The above transformation lets us play with ĀG, whose values
are 1

2 and − 1
2 instead of AG whose values are 1 and 0. We can now use that

with high probability ||ĀG|| ≤ O(
√
n):

||ĀG|| ≤ O(
√
n) =⇒ λĀG +O(λ

√
n)I ⪰ 0

Using that fact we get:

(
k

n
− λ)I + λ(

J

2
+ ĀG) ⪰ (

k

n
− λ)I + λ

J

2
−O(λ

√
n)I = (

k

n
−O(λ

√
n))I +

λ

2
J

Finally, for the whole matrix to be PSD, according to the Schur complement we
will need:

(
k

n
−O(λ

√
n))I + (

λ

2
− (

k

n
)2)J ⪰ 0

We need

λ ≥ (
k

n
)2,

k

n
≥ λ

√
n

Which can be rewritten as:

k

n
√
n
≥ λ ≥ k2

n2

where k ≪
√
n. Clearly, it is possible for us to choose λ that satisfies the above,

thus we have created a PSD matrix for the pseudo distribution and thus we are
done.

3.2 The Trace Method

The natural thing to do is to try to extend the results for bigger d. Let us
take a peek on what happens when we have d = 4. The matrix of the pseudo-

expectation, M4 =
(
(1, x)⊗2

)(
(1, x)⊗2

)T
will look like this:

M4 =

 A0 ∈ R1×1 A1 ∈ R1×n A2 ∈ R1×n2

AT
2 ∈ Rn×1 A3 ∈ Rn×n A4 ∈ Rn×n2

AT
3 ∈ Rn2×1 AT

4 ∈ Rn2×n A5 ∈ Rn2×n2


We will be looking for a pseudo expectation that makes the above matrix
PSD, subject to some constraints. One example constraint is that we need
Ẽxixjxkxl = 0 if ijkl does not form a clique. One can notice that even for
d = 4, it becomes increasingly harder to tune the parameters in order to get
what we want, therefore, we might need to different methods to come up with
ways to tackle the more general cases.

Let’s pause the thinking for the d = 4 for a while. We would like to equip
ourselves with machinery that is going to help us prove the cases for bigger d.

4

When we have a scalar random variable x, we can use the moments of x to get
a simple tail bound for x as follows:

Pr(x > t) = Pr(xk > tk) ≤ Exk

tk

We would like to develop such a tool for matrices too, in order to bound the
magnitude of the matrix. One can bound the magnitude of the matrix in the
following way:

E[||M ||] ≤ (Eλ2k
max)

1
2k ≤ E[Tr(M)2k]

1
2k

Note that we might be losing a factor of n
1
2k , since we just use the largest

eigen-value and we know:

λmin ≤ Tr(M)

n
≤ λmax

However, this is not such a big loss for us since for small k, even for k = log n
this loss becomes just a constant.
Let us go through some examples. Let us try the above with k = 1, for adjacency
matrix of a random graph M , for which we have independent entries with

Mij =

{
1, w.p. 1

2

−1, w.p. 1
2

and Mij = Mji. We will have:

E[Tr(M2)] =
∑
i

∑
j

EMijMji =
∑
i,j

E[M2
ij] = n2

So we get that E[||M ||] ≤ n. Can we do better? Let’s try for k = 4:

E[Tr(M4)] =
∑
ijkl

EMijMjkMklMli

Note that when all i, j, k, l are distinct, their total contribution to the sum is to
0 as they cancel out. However, when we have that only 3 of them are distinct,
for example when l = j, we get:∑

ijk

EMijMjkMkjMji =
∑
ijk

EM2
ijM

2
jk = O(n3) =⇒ E||M || ≤ O(n3/4)

For general k we have:

E[Tr(M2k)] =
∑

i1,...,i2k

E[
∏
j

Mijij+1
]

One thing that we can notice is that we need each edge ej = (ij , ij+1) to
appear an even number of times, in order for the term to be nonzero in ex-
pectation. In the case where it appears an odd number of times, then that

5

means that the net contribution of the edge, to the sum is 0. To see this
just note that the term (e1, e2, ..., ej−1, 1, ej+1, ..., e2k) is exactly cancelling with
(e1, e2, ..., ej−1,−1, ej+1, ..., e2k). So we need each labelling (i1, ..., i2k) to be
double covered, i.e. contain each pair (ij , ij+1) twice. Therefore for general k,
the following claim is useful:
Claim: Any double covering labeling of length 2k has at most k + 1 distinct
labels.
Sketch: Start with a 2k vertex cycle-graph of vertices i1, i2, ..., i2k, possibly
with repeated vertices. Start collapsing vertices with the same labelling. Note
that every time we collapse a vertex the graph remains connected. In the end
we have at most k edges, therefore at most k + 1 vertices, i.e. at most k + 1
labels, as required.

For general k, the above claim gives us a bound for the trace:

E[Tr(M2k)] ≤ nk+1(2k)k−1

Which can give a bound

E[||M ||] ≤ [nk+1(2k)k−1]
1
2k ≈

√
n · (2k) 1

2 ≤ C
√
n log n

3.3 Trace method for C4

Let C4 be a n2 × n2 matrix, where:

Cijkl =

{
1 if ijkl is a 4-clique in G

0, o.w.

Notice that if ij or kl are not edges in G, the whole row/column is going to
be 0. Let us take the matrix D4 which is of dimensions |E| × |E|, where E is
the number of edges of the random graph G. Then C4 and C̄4, which is the
’centered’ version of C4, i.e. C̄4 = C4 − EC4 can be written as:

C4 =

(
0 0
0 D4

)
,

C̄4 =

(
0 0
0 D̄4

)
, where D̄4 = D4 − ED4 = D4 − J

24 , since we have the 4 indices i, j, k, l form
a clique with probability 1

24 , conditioned on the fact that i ∼ j and k ∼ l. We
ultimately want to write a bound for the magnitude of C̄4. It is not hard to see
that by bounding the magnitude of D̄4, we can get the same magnitude bound
for C̄4. We have:

E[Tr(D̄4
4)] =

∑
i1j1,i2j2,i3j3,i4j4

E[(1i1j1,i2j2−2−4)(1i2j2,i3j3−2−4)(1i3j3,i4j4−2−4)(1i4j4,i1j1−2−4)]

6

Note that the indicator variables 1xyzw indicate whether xyzw is a clique or not.
As mentioned before, we have that each 4-tuple makes a clique with probability
1
24 , conditioned on the fact that edges ia, ja exist. Now, notice that the contri-
bution of tuples (i1, i2, i3, i4, j1, j2, j3, j4) where all of the labels are distinct is
0. Therefore we have that the terms that contribute to the overall sum, must
have at most 7 distinct labels, and since there are at most O(n7) of such terms,

E[Tr(D̄4
4)] ≤ O(n7)

Thus:
E||D̄4|| ≤ E[Tr(D̄4

4)]
1
4 ≤ O(n7/4)

Which bounds ||D̄4||, and subsequently ||C̄4|| to O(n
7
4).

3.4 Degree d = 4 sketch

Back to the planted clique for d = 4, recall that we want to construct a pseudo-
expectation Ẽ for which we want:

Ẽ1 = 1

Ẽxi =
k

n
,∀i ∈ [n]

Ẽx2
ix

2
j = Ẽxixj

{
λ2, i ∼ j

0, o.w.

Ẽxixjxk =

{
λ3, if ijk clique

0, o.w.

Ẽxixjxkxl =

{
λ4, if ijkl clique

0, o.w.

We also have from Cauchy Schwarz:

(Ẽ
∑
i

xi)
4 ≤ Ẽ(

∑
i

xi)
4 =

∑
ijkl

Ẽxixjxkxl

The pseudo-expectation matrix is going to look like:

M4 =

A0 A1 A2

AT
2 A3 A4

AT
3 AT

4 A5

 =

 1 Ẽx Ẽx⊗ x

Ẽx ẼxxT Ẽx(x⊗ x)T

Ẽx⊗ x Ẽx(x⊗ x)T Ẽ(x⊗ x)(x⊗ x)T


The goal here is to assign the parameters so that the above matrix is PSD. We
are going to show how we can get the block matrix A5 with dimensions n2 ×n2

to be PSD. Once the other block matrices are shown to be PSD, we can apply
the Schur complement to get that the whole matrix M4 is PSD.
Similarly with before, given that i ̸∼ j, then the whole row/column will be just

7

zeros for that entry. Thus we consider the matrix A′
5, which is just the matrix of

dimensions |E|×|E|, where each row/column represents one edge in the graphG.
For A′

5, each entry in the diagonal (ij, ij) needs to have Ẽx2
ix

2
j = Ẽxixj = λ2:

this can be written as λ2I. Moreover, for (ij, kl) where only 3 indices are
distinct, we will have Ẽxixjxk = λ3 if these three indices form a clique in the
original graph otherwise we have 0; this can be described by the matrix λ3D3,
where D3 is the n2 × n2 matrix with 1 on (ij, kl) if amongst i, j, k, l we have
three distinct indices and they form a clique. Finally if all 4 indices are different
Ẽxixjxkxl = λ4 otherwise the entry is 0; this can be described by the matrix
λ4D4, where D4 is the n2 × n2 matrix with 1 on (ij, kl) if amongst i, j, k, l we
have four distinct indices and they form a clique (this D4 is the same matrix as
the D4 used in section 3.3). We can then write A′

5 as:

A′
5 ≈ λ2I + λ3D3 + λ4D4

In combination to what we found in section 3.3 we get

A′
5 ≈ λ2I + λ3D3 + λ4(D̄4 + J · 2−4) ⪰ [λ2 − λ4O(n

7
4)]I + λ3D3 + J · 2−4

We can also center D3 by writing D̄3 = D3 − J
2 and using that ||D̄3|| can be

bounded by
√
n, the above becomes:

A′
5 ⪰ [λ2−λ4O(n

7
4)−λ3O(

√
n)]I+λ4J ·2−4+λ3

J

2
⪰ [λ2−λ4O(n

7
4)−λ3O(

√
n)]I

Thus we need:

λ2 ≈ k2

n2
≫ (

k4

n4
)n

7
4

and

λ2 ≈ k2

n2
≫ (

k3

n3
)
√
n

which is satisfied when k ≪ n
1
8 . We have now that A5 is PSD when k ≪ n

1
8 .

to finish it, one can determine the conditions that give the other block matrices
to be PSD, do the Schur complement, and get a lower bound for k.

3.5 Kelner’s counter-example

In the previous sections, we have seen a ’naive’ construction of the pseudoexpec-
tation. The naive construction of a degree d pseudoexpectation uses λ1, ..., λd,
for each of which we have λi = (kn)

i, and sets for every S ⊂ [n], |S| ≤ d:

Ẽ[xS] =

{
λ|S|, if S is a clique

0, o.w.

It worked for d = 2 and we did a sketch of how it can be done for d = 4. There-
fore, a natural question is whether the ’naively’ constructed pseudoexpectation,
is PSD, and if so, for which k. Kelner provided a negative result and showed

8

that for degree d = 4 the naive construction gives a matrix for the pseudo distri-
bution that is not PSD, for a specific regime of k - more specifically for k ≫ n

1
3 .

The construction goes as follows: Let ri(x) =
∑n

j=1(1i∼j − 1
2)xj and P (x) =∑

ri(x)
4. Let also rij = 1i∼j − 1

2 . Suppose we have constructed Ẽ, then we
have:

ẼP (x) = Ẽ
∑

ri(x)
4 ≥ Ẽ

∑
xiri(x)

4 =
∑

i,j,k,l,s

rijrikrilrisẼxixjxkxlxs =
∑

i,j,k,l,s

1

24
Ẽxixjxkxlxs =

=
1

24
Ẽ[(

∑
xi)

5] ≥ Ω(k5)

On the other hand now, building the pseudo distribution naively gives us:

ẼP (x) = Ẽ
∑

ri(x)
4 =

∑
i,j,k,l,s

rijrikrilrisẼxjxkxlxs

We have the following cases:

• If in the set of variables {xj , xk, xl, xs} we have at least three different
variables, we have that the sum of all these terms, in expectation over G,
is going to be 0.

• If we have exactly 2 distinct variables in {xj , xk, xl, xs} then we have n2

such choices of pairs, and also n choices for i. For each of these choices,

the value of the pseudo-expectation is needed to be k2

n2 (as also seen in the

above section, for λ2). This gives us value
k2

n2 · n2 · n = nk2.

• If we have exactly 1 distinct variables in {xj , xk, xl, xs} then we have n
such choices of the variables, and also n choices for i. For each of these
choices, the value of the pseudo-expectation is needed to be k

n (as also

seen in the above section, for λ1). This gives us value
k
n · n · n = nk.

The above leads to the inequality:

EẼ
∑
i

ri(x)
4 ≤ O(nk) +O(nk2) ≤ O(nk2)

Clearly we have ẼP (x) ≥ k5 but also we have now that ẼP (x) ≤ nk2. Therefore
we require that

nk2 ≥ k5

which if we plug in k ≫ n
1
3 does not hold.

So what went wrong here? We had constructed P (G, x) such that:

ẼnaiveP (G, x) ̸= Ẽx,G∼plantedP (G, x)

That was actually an SoS proof that:

C6 ⊢ P (G, x) ≥ Ω(Ẽx,G∼plantedP (G, x))

9

