6.599/, Lecture 2
SoS Overview

S. Hopkins

SoS is an algorithmic toolkit for solving systems of
polynomial inequalities.

p]_(x]_; "';xn) 2 O, ---pm(xl, ...,Xn) 2 O

Why polynomials?

Polynomials are extremely expressive

Polynomial
Systems &
Sum of Squares
Method

Combinatorial optimization

convex programs
subsuming LP, SDP,
spectral methods

Statistics
Proofs to algorithms

Cryptography

A (brief and opinionated) history

Early 1900s: Hilbert investigates relationship between nonnegative
polynomials and squares.

1950s: Invention of linear programming

1960s: Krivine & Stengtl)e prove that every nonnegative polynomial over a
semialgebraic set can be certified nonnegative by an SoS proof

1970s: Ellipsoid method — convex programming in P

1987: Shor proposes precursor to SoS method, relating polynomial system
solving to semidefinite/convex programming

1990s/2000s: LP, SDP, eigenvalue methods extensively investigated in
theoretical computer science & optimization

2000s: Lasserre proposes “pseudoexpectation SDP” and Parrilo
independently proposes “SoS proof SDP”.

2010s: SoS as a unifying view on LP, SDP, spectral algorithms, + extensive
new applications

This course

Goal 1: familiarize you with SoS language and tools
for theoretical analysis (no programming)

Goal 2: enable you to see possible uses of SoS in your
own research (course project!)

Goal 3: see some beautiful algorithms

This course

TCS perspective:
qualitative: polynomial running times, large n
quantitative: accuracy guarantees

SoS as a high-level programming language for algorithm
design

(We won’t worry about “compiling down” to LP/SDP. And
we won’t worry about using the most lightweight
algorithms possible — “just import all the libraries”)

Prerequisites

Linear algebra, at the level of last lecture

matrices, eigenvalues, eigenvectors, quadratic forms,
Cholesky decomposition

Probability & (today) Information Theory

every true fact about a constant-dimensional random
variable is “trivial”

This course

We will cover some subset of:

Worst-case approximation algorithms (max-cut, last week)
Approx. algorithms for “structured” instances (today)
Algorithms for random instances (probably next week)
Statistical inference & robust statistics

Differentially private algorithms via SoS

“Fast” implementations of SoS

SoS view on computational complexity

Other topics?

Let’s review

Hypercube basics

Every f : {0,1}"* — R can be uniquely represented as
a multilinear polynomial

FOO=) F(S)-x°
SCcn]

SoS Proof

(of nonnegativity on the hypercube)

g f =0 f(x) =X,_ api(x)? forallx € {0,1}"
with degpl- <d

search for proofs in n%(%) time via SDP

(matrix representation of proofs)

every nonnegative f has ¢,y [= 0
forall f, Faeg 7 f +Z‘f(5)‘ >0

Pseudoexpectations

E : R[x].; — R whichis:
(1) Linear

(2) Respects x? = x;:forall S, E|xSx7| = E[x”]
(3) Positive: E[p?] = 0

(4) Normalized: E[1] = 1

Fr.S
represent as numbers {E[x]}ISISd)
search for pseudoexpectation with E[f] < 0 in time n?(®)

Very useful intuition: [represents low-degree moments of
distribution on the hypercube

(even though it doesn’t...)

Duality

For every f,d = deg [(even), exactly one holds:
(1) F¢ f =0
(2) Exists degree-d pseudoexpectation E[f] < 0

Max-Cut

G = (V,E)

Let G(x) = Zi~j(xl- — j)z = number of edges cut
by x

1

Thm: forevery G, -, G(x) < .

-max G (y)
y

Proof by rounding any E s.t. E[G] = « to some y s.t.
G(y) = 0.878 a.

(Also leads to algorithm for finding v)

Proof by rounding any E s.t. E[G] = « to some y s.t.
G(y) = 0.878 a.

Key idea: sample from Gaussian on R"™ which has
same mean and covariance as E

Same key idea gives approximation algorithms for:

—-maxx'AxforA =0
X

-- Max XTAy ("cut norm”/Grothendieck)
X,y

and forms the basis for the best-known
approximation algorithms for graph expansion

(Arora-Rao-Vazirani)

