
6.S997, Lecture 2

SoS Overview

S. Hopkins

SoS is an algorithmic toolkit for solving systems of
polynomial inequalities.

𝑝! 𝑥!, … , 𝑥" ≥ 0,…𝑝# 𝑥!, … , 𝑥" ≥ 0

Why polynomials?

Polynomials are extremely expressive

Polynomial
Systems &

Sum of Squares
Method

convex programs
subsuming LP, SDP,
spectral methods

Combinatorial optimization

Statistics
Proofs to algorithms

Robotics/optimal control

Quantum information

Cryptography

A (brief and opinionated) history

Early 1900s: Hilbert investigates relationship between nonnegative
polynomials and squares.
1950s: Invention of linear programming
1960s: Krivine & Stengle prove that every nonnegative polynomial over a
semialgebraic set can be certified nonnegative by an SoS proof
1970s: Ellipsoid method – convex programming in P
1987: Shor proposes precursor to SoS method, relating polynomial system
solving to semidefinite/convex programming
1990s/2000s: LP, SDP, eigenvalue methods extensively investigated in
theoretical computer science & optimization
2000s: Lasserre proposes “pseudoexpectation SDP” and Parrilo
independently proposes “SoS proof SDP”.
2010s: SoS as a unifying view on LP, SDP, spectral algorithms, + extensive
new applications

This course

Goal 1: familiarize you with SoS language and tools
for theoretical analysis (no programming)

Goal 2: enable you to see possible uses of SoS in your
own research (course project!)

Goal 3: see some beautiful algorithms

This course

TCS perspective:
qualitative: polynomial running times, large n
quantitative: accuracy guarantees

SoS as a high-level programming language for algorithm
design

(We won’t worry about “compiling down” to LP/SDP. And
we won’t worry about using the most lightweight
algorithms possible – “just import all the libraries”)

Prerequisites

Linear algebra, at the level of last lecture
matrices, eigenvalues, eigenvectors, quadratic forms,
Cholesky decomposition

Probability & (today) Information Theory
every true fact about a constant-dimensional random
variable is “trivial”

This course

We will cover some subset of:
Worst-case approximation algorithms (max-cut, last week)

Approx. algorithms for “structured” instances (today)

Algorithms for random instances (probably next week)

Statistical inference & robust statistics
Differentially private algorithms via SoS
”Fast” implementations of SoS
SoS view on computational complexity
Other topics?

Let’s review

Hypercube basics

Every 𝑓 ∶ 0,1 " → ℝ can be uniquely represented as
a multilinear polynomial

𝑓 𝑥 = -
$⊆["]

.𝑓 𝑆 ⋅ 𝑥$

SoS Proof
(of nonnegativity on the hypercube)

⊢(𝑓 ≥ 0: 𝑓 𝑥 = ∑)*"! 𝑝) 𝑥
+ for all 𝑥 ∈ 0,1 "

with deg 𝑝) ≤ 𝑑

search for proofs in 𝑛,(() time via SDP
(matrix representation of proofs)

every nonnegative 𝑓 has ⊢,(") 𝑓 ≥ 0
for all 𝑓, ⊢/01 2 𝑓 + ∑ .𝑓 𝑆 ≥ 0

Pseudoexpectations
!𝔼 ∶ ℝ 𝑥 !" → ℝ which is:
(1) Linear
(2) Respects 𝑥#$ = 𝑥#: for all 𝑆, !𝔼 𝑥%𝑥#$ = !𝔼[𝑥%]
(3) Positive: !𝔼 𝑝$ ≥ 0
(4) Normalized: !𝔼 1 = 1

represent as numbers !𝔼 𝑥% % !"
search for pseudoexpectation with !𝔼 𝑓 < 0 in time 𝑛&(")

Very useful intuition: !𝔼 represents low-degree moments of
distribution on the hypercube
(even though it doesn’t…)

Duality

For every 𝑓, 𝑑 ≥ deg 𝑓 (even), exactly one holds:
(1) ⊢(𝑓 ≥ 0
(2) Exists degree-𝑑 pseudoexpectation <𝔼 𝑓 < 0

Max-Cut

𝐺 = (𝑉, 𝐸)

Let 𝐺 𝑥 = ∑)∼4 𝑥) − 𝑥4
+
= number of edges cut

by 𝑥

Thm: for every 𝐺, ⊢+ 𝐺 𝑥 ≤ !
5.787

⋅ max
9

𝐺(𝑦)

Proof by rounding any <𝔼 s.t. <𝔼 𝐺 ≥ 𝛼 to some 𝑦 s.t.
𝐺 𝑦 ≥ 0.878 𝛼.
(Also leads to algorithm for finding 𝑦)

Proof by rounding any <𝔼 s.t. <𝔼 𝐺 ≥ 𝛼 to some 𝑦 s.t.
𝐺 𝑦 ≥ 0.878 𝛼.

Key idea: sample from Gaussian on ℝ" which has
same mean and covariance as <𝔼

Same key idea gives approximation algorithms for:
-- max

;
𝑥<𝐴𝑥 for 𝐴 ≽ 0

-- max
;,9

𝑥<𝐴𝑦 (”cut norm”/Grothendieck)

and forms the basis for the best-known
approximation algorithms for graph expansion
(Arora-Rao-Vazirani)

